Optimized Operational Conditions for Removal of Discharged Toxic Silver Nanoparticles from Wastewater using Electrocoagulation

Ghada. E. Abd Elgawad¹, Gehan A. El Naggar¹, Fayza. S. Abdelgeleel¹, Howida. A. Fetouh².*

¹ Chemistry Department, Faculty of science, Damanhour University, Damanhour 22511, Egypt.
² Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.

*Correspondence Address:
Howida. A. Fetouh: Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt. E-mail: howida_fetouh@alexu.edu.eg

KEYWORDS: Electrocoagulation; removal; efficiency; silver nanoparticles; wastewater; treatment.

ABSTRACT: Novelty of this study is that it achieved complete removal of toxic silver nanoparticles (AgNPs) using modified electrocoagulation (EC) technology at low energy consumption via optimizing operational conditions. It is the first time to explore electrochemical behaviour of anodes materials in EC system. A simple electrolytic cell (DC power source 3V and 200 mA) is used. Aluminium anode is more superior to steel (iron) anode. Percent removal efficiency for both iron and aluminium anodes increased at high current density reached 97% for aluminium at 30 mA cm⁻² at low energy consumption 3.1 kW h m⁻³. Supporting electrolyte 10 mL 0.1M NaCl increased solution conductivity and ionic strength. Current efficiency reached 97.2% for 200 ppm AgNPs at optimum operation conditions including current density, electrolysis time, pH and electrodes materials. Designed simple EC reactor at laboratory scale can be scaled up for pilot plant. Redox reactions at electrodes surfaces controlled removal efficiency. Treated effluent was colourless and no AgNPs were detected. Optimized conditions for removal orange colour aqueous solution 200 ppm AgNPs are: Al anode, pencil cathode, pH 4, 2.4V and low current density 30 mA cm⁻² at agitation speed 50 rotation per min. Efficiency of Al anode is discussed on the basis of electrochemical behaviour using cyclic voltammetry. Electricity consumption decreased by increasing electrolytes conductivity and decreasing anode area.

1. INTRODUCTION

Clean water is essential demand: Improved life standard, industry; human, agriculture and energy production. Rapid growing global population face global water scarcity. Global climate changed distribution of fresh water and destabilized water supplies. Declined inadequate water resource and potable water-shortage needs rapid efficient water treatment technologies [1,2]. Municipal sewage discharged into industrial effluents contains storm water sewer and seepage groundwater [3]. Storm water contaminates fresh water. Brackish water and seawater are new norms [4]. Water pollutant such as microorganisms, organic matter (OM), heavy metals, ammonia, nutrients and gases (from residential areas, commercial sites, industry, and agriculture, etc.) is a chemical, biological or physical substance decline quality: prevent suitable use, threat living beings causes death millions people [5,6].
Chemical pollutants are toxic, carcinogenic mutagenic cause teratogenicity [6] impact ecosystem. Undesirable physicochemical and biological properties prevents: domestic, commercial, industrial, agricultural uses and recycling [6]. Except distillation, each water treatment technology (reverse osmosis (RO); distillation, freezing, ion exchange, adsorption, neutralization, softening, chemical precipitation, coagulation, disinfection, biological activation and electro dialysis) remove pollutant such as suspended solid, form sludge and biofilm (in presence of N, P, C-nutrients) [7]; cannot remove: toxic NPs and some organicics such as surfactants, phenols and pesticides [8, 9].

Electrocoagulation (EC) rapidly simply and safely removes: nutrients, fluorides, persistent chemicals with negligible sludge or secondary pollutions [10]; heavy metals, anions, colorants, oils, suspended solids, pharmaceutical compounds, radioactive elements such as arsenic up to 1 ppm [11, 12]; NPs [13, 14]; OM, dyes and silica [10]. Example, removal efficiency (%Re) 98% Cd (II) ions at 1.0 kW h m⁻³, 20 mA cm², pH 7 [15]. Table 1.

Table 1. Comparison of EC with some other technologies removed Cd(II) ion [15, 16].

<table>
<thead>
<tr>
<th>Technology</th>
<th>Filtration</th>
<th>Ion exchange</th>
<th>Adsorption</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Re</td>
<td>86</td>
<td>84</td>
<td>70</td>
<td>98</td>
</tr>
<tr>
<td>Reference</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>26</td>
</tr>
</tbody>
</table>

Energy lose (by over potentials) and consumption limited scale up [16]. Emissions water vapour or ozone results from chemical-, and biological-oxygen demand on drying sludge [17]; Oxides at cathode surface decreases current efficiency; electrodes passivation; Mg-hydroxides inhibited hydrogen evolution reaction and current flow; improper reactor, remained metal ions need removal; replacing consumed anodes [18, 19]; non-destructive AC current and high solution conductivity required. Chlorides from chlorinated compounds require periodical cleaning of electrodes [20].

Toxic AgNPs: harm ecosystem [21]; discharged in rivers, lakes and coastal areas from: domestic gray wastewater from households and institutions [22]; industrial effluents (example: coating, medical devices, electronics, cosmetics, textile and pharmaceutical, medical activity, household food storage, adsorbents, hospitals, environmental and biological areas [21, 22]; dirty wastewater from human activities, food-processing& processing): Quantum dots antimicrobial applied in environmental remediation, medicine, pharmaceutical products; biocides; biology; catalysis, optics; bio-; information-technology and security; inks; photo-degradation; photography; biosensors and filters [23]; municipal water and post wastewater treatment; release free Ag(I) ions react with ligands in wastewater giving stable toxic Ag complexes and precipitates affect ecosystem and environment: Ag species (interchange into each other, stability depend on ionic strength and OM; inhibits ecological nitrification cycle [23]; lose protective coating agent, aggregate and toxic chemicals decreased metabolism and increases phenols, AgO dissolves give toxic Ag(I) ion [23]; neurotoxic; accumulates in food chain causes environmental and health risks, induce inflammation and memory problems; releases Ag(I) ion at low pH causing oxidative stress and cell damage, alter metabolism by reactive oxygen species; causes weight loss of plants and suppress gene expression and immunity enzymes; damages DNA and reduce productivity.

AgNPs removal by sequencing batch reactor (SBR), sludge bacteria activation, filtration, RO, adsorption (slow need pH adjustment) and ion-exchange showed complexity, high costs and sludge. Expensive adsorbents activated carbon (AC), clays, zeolites, cellulosic materials, graphene and biochar experience pores closure. Adsorbed AgNPs on AC give Ag(I) ions. Micro porous adsorbent rarely recycled, required energy and toxic chemicals for activation and modification and showed interference by other pollutants. Slow coagulation by alum (Al₂(SO₄)₃), FeCl₃, poly AlCl₃ give sludge [24]. Chemical neutralization of these concentrated chemicals form secondary pollutants. Removed by EC using concentrated Na-citrate stabilizer consumed 90 min. at 30 mA cm² [25]. Reported removal AgNPs by EC are inconsistent and inadequate. This study aims solving problem of potable water shortage by optimizing operational experimental conditions (anode materials; J; electrolysis time; pH; initial concentration, Co) for efficient removal using simple EC reactor at minimum energy (by optimizing operation conditions) and no chemicals. Conclusion of this study will discussed in details at the end of the study on expectation that optimizing operation conditions would achieved complete AgNPs removal.

2. Results and Discussion
2.1. Characterization

Figure 1 showed characteristic UV absorption spectra of AgNPs [38].

Figure 1. UV-Vis. absorbance band of AgNPs.

Characteristic intense UV-Vis. band at 440 nm is due to electronic transition of surface electrons Plasmon documented for metal nanoparticles with particle size in the range 2-100 nm [26].

Figure 2 showed FTIR spectra of AgNPs and Al and Fe flocs.
Vibrational IR bands of functional groups assigned as: Intense narrow bands at 3363.80 cm\(^{-1}\) to OH stretching O-H hydroxyl groups of Al-, Fe- flocs. More intense bands of Al flocs due to high affinity of Al to oxygen; band at 2984 due to C-H stretching of CH\(_2\) in CMC coating capping agent of AgNPs. Bands of metallic AgNPs at (903.72, 886.32, 666.43, 642.22, 583.30 cm\(^{-1}\) are due to stretching vibrations of bonds between Ag\(^0\) and CMC. Intense vibrational bands of stretching Fe-O in Fe(OH)\(_3\) at 588 cm\(^{-1}\). Al- and Fe- flocs showed all vibrational bands of AgNPs and metal hydroxides [13, 16, 17]: broad weak intense band at 2050.28, moderate intense band at1534.39, weak bands at (1385.088, 1117.86, 1021.71) and intense bands at 580.06-470.50 [25]. Organic functional groups of CMC gave intense vibrational bands at the frequency range 2000 cm\(^{-1}\)-1000 cm\(^{-1}\)

TEM micrographs, Figure 3a showed spherical mono dispersed AgNPs of particle size smaller than 100 nm. Quantum dot small particles size AgNPs less than 100 nm has high specific surface area and reactivity [27]. Figure 3 (b,c) showed SEM micrographs of Fe and Al AgNPs flocs.

SEM micrographs showed Fe, and Al flocs are massive than AgNPs. The larger µm scale particle size of flocs confirmed AgNPs adsorption on surface of hydroxide Al(OH)\(_3\) or Fe(OH)\(_3\) [10, 13, 14]. Al-floc is more continuous and denser than Fe-floc indicating preferential adsorption of AgNPs on Al(OH)\(_3\) surface.

Figure 4 (a-c) showed pXRD patterns. Characteristic diffractions of AgNPs at 2-theta\(^o\): 37\(^o\), 44\(^o\), 64\(^o\) and 74\(^o\) as intense relatively broad bands indicating long-range order crystallinity and purity [28]. Sharp diffraction peaks of AgNPs followed Bragg law.
Lattice planes of samples produce peaks at their corresponding angular positions 2θ obeying Bragg's law. Intense sharp diffraction peaks of AgNPs signifying crystallite size less than 100 nm. AgNPs crystallinity is declined by adsorption on Al(III) and Fe(III) hydroxides. Sharp diffraction peaks of AgNPs replaced by broad diffraction bands in flocs [10]. Peaks of Fe hydroxide appeared at 23° along with diffraction peaks of AgNPs at 2θ: 38.45°, 46.35°. Disappearance of AgNPs diffraction peak at 64.75° confirmed adsorption on iron hydroxides shell forming flocs. Al floc showed wide continuous diffraction peaks at range 2-theta 9.0°-45° due to incorporated both AgNPs and Al oxide (Al₂O₃) in flocs [14].

2.2. Optimizing experimental conditions for efficient EC

Figure 5 represented triplicates determination of pH effect on $J_{\text{mA cm}^{-2}}$ on Al and Fe anode, 100 ppm AgNPs, 2.0 Volt, 15.0 min. at other fixed parameters.

![Figure 5](image_url)

Figure 5. Variation current density on Al and Fe anodes at pH 0.2, 2.0, 3.0 and 4.0 respectively.

Applied 1.1 Volts give low residual current for Al and Fe anodes. Large applied potential 2.4V overcame Ohmic and diffusion overvoltages as well as offered activation overvoltages. Al anode showed higher current density J than Fe anode at all pH values due to low electrical resistivity and higher activity [29]. The highest J of Al at pH 4 indicating increasing numbers of OH⁻ species that attract Al(III) ion and enhanced formation of Al-hydroxide coagula flocculating AgNPs [30]. Current density control effectiveness of EC depending on pH of aqueous solution pH of the solution adjusted at pH 4 in the following experiments. Al developed thin protective surface Al-oxide film that is quite stable in neutral, acid solutions but attacked by alkali. So high pH is avoided in EC to keep durability of Al anode. Al is a suitable anode and further evaluated in this current study for AgNPs removla. Al has: colorless appearance, nontoxic, good electrical and thermal conductivity and better: reflectivity, lightness and good strength to weight ratio.

Better performance of Al than Fe was confirmed from comparative cyclic voltammetry. Figure 6 confirmed higher J on Al anode than Fe due to: lower charge transfer resistance across Al surface, good redox characteristics and higher chemical equivalent [31].

![Figure 6](image_url)

Figure 6. Cyclic voltammogram: a) Al and b) Fe at scan rate 20 mV min.

This irreversible cyclic voltammograms (CV) indicated non spontaneous anodic oxidation of anode surface under applied potential. Al causes higher J than Fe for the same applied potential. Anodic oxidation of Fe generates much more hydroxide species (than Al) that retard current flow. J increased with increasing the applied potential followed Ohm law of electrolysis [32].

Applied potential (V) = Current flow (I)*Ohmic resistance (R) (1)

Where R includes solution resistance and resistance of external conducting wires.

Figure 7 (a,b) showed, for the same applied potential (1.3V and 1.6V) in 0.1M NaCl at fixed other experimental conditions, current density (J) at Al anode is larger than J and Fe anode due to better electrical conductivity of Al.

![Figure 7](image_url)

Figure 7. a. Comparative current density on Al anode and Fe anodes.

Fluctuation of current density (J) during electrolysis is attributed to electrode polarization by instantaneous accumulation of liberated electrons during anodic oxidation. Al is good anode due to low density, good: mechanical properties, better finishing, corrosion resistance (in acidic and neutral media) and higher electrical conductivity [33].

![Figure 7](image_url)

Figure 7. b. Current density of Al anode in 0.1M NaCl at different applied potential.
Applied potential 1.8V give high \(J \). However 2.8V was sufficient for metal oxidation giving massive flocs. **Figure 8** showed current density \(J \) on Al in 100 ppm AgNPs contains 10 mL 0.1 M NaCl increased with decreasing anode surface area from 0.5 cm\(^2\) to 0.1cm\(^2\).

NaCl increased ionic conductivity and ionic strength of the solution and facilitated diffusion of AgNPs to the shells of metal hydroxide [13, 34]. Effect of cathode to anode area ratio for Al anode (0.5 cm\(^2\)) in 100 mL AgNPs is represented in **Figure 9**. For pencil, Pt, and graphite cathode.

At the same operation conditions, as the cathode area increased relative to the anode, \(J \) increased on anode surface. For the same cathode to anode area ratio, cathode materials increases \(J \) follows the order:

Pencil > platinum > graphite

Figure 10. Showed EDX analysis of Al before and after immersion in 100 ppm AgNPs at other fixed experimental conditions.

Peaks of O, Al confirmed formation of Al oxides and hydroxides. Al\(_2\)O\(_3\) oxide spontaneously in aerated aqueous solution. Some chloride ions on Al surface from HCl used to adjust pH and NaCl. Atom percent 2.61% Ag are due to adsorbed AgNPs. % oxygen is from CMC capping coating agent for AgNPs [35].

2.3. Quantitative analysis

UV-Vis. absorbance bands of AgNPs at 430 nm decreased on passage time of electrolysis, **Figure 11** [42]. Decrease of UV-absorbance of AgNPs due to decrease [AgNPs] by electrocoagulation [36].

At same experimental conditions: Al anode showed higher %Re for AgNPs than Fe. Al anode is effective at low \(J \) 10, 20 mA cm\(^{-2}\). At high \(J \) 30 mA cm\(^{-2}\), Fe anode is comparable to Al anode, % Re 96.3% and 97.2% respectively due to extensive hydrolysis of large numbers of metal ions. Electrical conductivity of Al and steel are 49.1*10\(^4\) and 26.0*10\(^3\) Siemens/cm, respectively. Al had much lower electrical resistivity (1.506*10\(^{-5}\) Ohm) than Fe 2.257*10\(^{-5}\) Ohm [37].

Figure 8. Effect of anode surface area on current density.

Figure 9. Effect of cathode to anode area ratio and cathode materials (a: graphite, b: Pt, and c: pencil on J on Al anode.

Figure 10. EDX spectra for: a) Al and b) Al floc.

Figure 11. UV-Vis. absorbance bands of AgNPs using Al anode and \(J \) 20 mA cm\(^{-2}\) at electrolysis time (min.): a) 0, b) 10, c) 15, d)20, e)25, f)30.

Table 2 showed %Re AgNPs increased for both iron and Al anodes by increasing \(J \) at pH 4.0, 50 mL solution, 50 rpm, 500 ppm initial concentration (Co) at 30 min.

Table 2. Effect of current density, \(J \) on removal efficiency of 500 ppm AgNPs.

<table>
<thead>
<tr>
<th>Current density, (J) (mA cm(^{-2}))</th>
<th>% Re of 500 AgNPs, pH 4, 30 min. time of electrolysis, 1.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe anode</td>
<td>Al anode</td>
</tr>
<tr>
<td>10</td>
<td>40.6</td>
</tr>
<tr>
<td>20</td>
<td>60.3</td>
</tr>
<tr>
<td>30</td>
<td>96.3</td>
</tr>
</tbody>
</table>

Table 3 collected Re for 500 ppm AgNPs by Fe, Al anodes at the fixed operation conditions and 2.4 V at \(J \) range: 5 mA cm\(^{-2}\) - 30 mA cm\(^{-2}\).

Table 3. Percent removal 200 ppm AgNPs at different \(J \): Co: 50 rpm, 2.4V using pencil cathode.

<table>
<thead>
<tr>
<th>Current density, (J) mA cm(^{-2})</th>
<th>% Re AgNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe anode</td>
<td>Al anode</td>
</tr>
<tr>
<td>5</td>
<td>63.30</td>
</tr>
<tr>
<td>10</td>
<td>66.60</td>
</tr>
<tr>
<td>15</td>
<td>84.30</td>
</tr>
<tr>
<td>20</td>
<td>87.70</td>
</tr>
<tr>
<td>25</td>
<td>92.20</td>
</tr>
<tr>
<td>30</td>
<td>96.30</td>
</tr>
</tbody>
</table>

Alexandria Journal of Science and Technology, 2023, 1(1), 44–54
Current density J affect adherence of AgNPs on surface of metal hydroxide. At low J, migration rate of hydroxyl ion to the region near anode surface is low. Very high J avoided as it increase transport rate of ions causing insufficient time for formation Al, Fe hydroxides and decrease coulomb forces between adsorbed AgNPs and shell of metal hydroxide. Optimum $J = 30$ mA cm$^{-2}$ allowed both diffusion of dissolved ions to away anode/solution interface and moving AgNPs toward shells of metal hydroxides. Mechanical agitation also improved ion diffusion [38].

Higher %Re AgNPs of Al anode than iron anode because Al is an active metal in EMF series, liberates three electrons per atom and has high affinity for oxygen. Al(OH)$_3$ is more thermodynamic stable than Fe(OH)$_3$ [16]. Compared to ferric hydroxide, Al(OH)$_3$ has more residence time for flocculation [39]. Anode in EC-solution had no parasitic reactions (rather than formation of metal ions. Higher %Re AgNPs indicated absence of anode polarization or cathode carbonation that decrease current efficiency [40].

SEM micrographs, Figure 12 for Al and Fe surface in the same aqueous solution, pH 4 showed different morphology before and after oxidation.

Al anode showed more rough and porous surface than Fe anode. Al anode is further evaluated for removal different AgNPs concentrations at low 10 mA cm$^{-2}$ (graphite cathode) Table 4 and Figure 13.

In this study, removal high AgNPs concentration investigated as high AgNPs concentration is toxic cause lipid peroxidation giving H_2O_2 that penetrates biological cell membranes, interacts with proteins and damage various cellular organelles [41]. High Co increased AgNPs agglomeration by Vander Waals interaction [42]. Irregular %Re at high concentration AgNPs, is due to interference of electrophoresis AgNPs deposited AgNPs on anode surface at concentration above 500 ppm [43].

Table 5 showed comparative removal 500 ppm AgNPs using different cathodes. Low-cost pencil electrode is the most efficient conductive cathode acts by pores and multiple functional groups [44]. Expensive Pt is high conductive but of low porosity. Pencil electrode conducting electricity by extensive delocalized electron density.

Figure 13. Dependence of %Re of AgNPs on initial concentration.

Table 4. %Re of different concentrations AgNPs using Al anode at $J = 10$ mA cm$^{-2}$.

<table>
<thead>
<tr>
<th>Concentration, ppm</th>
<th>Initial, Co 100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final, C$_f$</td>
<td>30</td>
<td>41</td>
<td>70</td>
<td>90</td>
<td>100</td>
<td>119</td>
<td>142</td>
<td>186</td>
<td>241</td>
<td>240</td>
</tr>
<tr>
<td>Removal efficiency, Re</td>
<td>70</td>
<td>73</td>
<td>65</td>
<td>63</td>
<td>67</td>
<td>66</td>
<td>65</td>
<td>59</td>
<td>52</td>
<td>56</td>
</tr>
</tbody>
</table>

Table 5. Effect of cathode materials on %Re AgNPs using Al anode.

<table>
<thead>
<tr>
<th>Cathode materials</th>
<th>Pencil</th>
<th>Platinum, Pt</th>
<th>Graphite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal efficiency, %Re</td>
<td>80</td>
<td>66</td>
<td>61</td>
</tr>
</tbody>
</table>
2.4. Removal mechanism of AgNPs

In EC, coagulant Fe$^{3+}$ and Al$^{3+}$ ions generated by anodic oxidation of Al and Fe. Hydrolysis of metal ions by hydroxyl ions from water electrolysis giving positively charged metal hydroxides coagulate negatively charged AgNPs by: elecstrophic attraction or adsorption. Negatively charged suspended colloidal AgNPs can be neutralized via mutual collision with counter ions, (loss net surface charge, electrical double layer (EDL) causing electrostatic repulsion and aggregate by Van der Waals’s forces. Flocs separated by skimming and filtration [45]. Yellowish orange color AgNPs is undetected in clear treated water filtrate indicating efficient EC.

\[
\text{Fe} \rightarrow \text{Fe}^{2+} + 2e^- \quad (1)
\]

\[
\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + e^- \quad (2)
\]

Water electrolysis [46]:

\[
\text{H}_2\text{O} + 2e^- \rightarrow \text{H}^+ + \text{OH}^- \rightarrow 2\text{OH}^- \quad (migrates to anode) + \text{H}_2 + \text{O}_2 \quad (3)
\]

pH increase during electrolysis yield different insoluble metal hydroxide complexes such as Fe(OH)$_{3\alpha}$ coagulant at pH 5.5-9.5, unimer Fe(OH)$^3^-$ (pH 9.5-11.4), Fe(OH)$_3$ (pH 11.8-14.0):

\[
\text{Fe}^{2+} + 2\text{OH}^- \rightarrow \text{Fe}^{3+} + \text{H}_2\text{O} \quad (4)
\]

Overall redox reaction: Fe + 2H$_2$O \rightarrow Fe(OH)$_{3\alpha}$ + H$_2$O + E$_{\text{Fe,OH}}$ (5)

Ferrire hydroxide Fe(OH)$_{3\alpha}$ formed at high potential is an effective coagulant.

\[
\text{Al} \rightarrow \text{Al}^{3+} + 3e^- \quad (6)
\]

Al(OH)$_3$ yield larger numbers of unimers and polymeric species than steel.

Al(OH)$_3$ is the main coagulant:

Overall reaction: Al + 3 H$_2$O \rightarrow Al(OH)$_{3\alpha}$ + 1.5H$_2$O + E$_{\text{Al,OH}}$ (7)

The bellow outline structure show illustrated main removal mechanisms AgNPs via: adsorption (entrapment charge neutralization by removal electrical double layer around AgNPs and electrostatic attraction between negatively charged AgNPs and positively charged metal hydroxides [46].

The predominant removal mechanism is physisorption by electrostatic interaction on shell of Fe and Al hydroxides giving flocs as confirmed by FTIR spectra that maintained vibrational bands of CMC capping coating agent of AgNPs.

Table 6. Chemical composition of steel and aluminum.

<table>
<thead>
<tr>
<th>Steel</th>
<th>Element</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cu</th>
<th>Ni</th>
<th>Cr</th>
<th>V</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wt.%</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>Element</td>
<td>Mn</td>
<td>Ni</td>
<td>Zn</td>
<td>Cu</td>
<td>Ti</td>
<td>Fe</td>
<td>Si</td>
<td>Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wt.%</td>
<td>0.001</td>
<td>0.003</td>
<td>0.17</td>
<td>0.14</td>
<td>0.997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wt.%</td>
<td>0.37</td>
<td>1.21</td>
<td>0.23</td>
<td>0.02</td>
<td>0.01</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.5. Energy consumption

Power density (P, Watt) = electrical current (I) # applied voltage (V)

Energy consumption, E = P*t = I*t/F*v

Where I: current (A), V: solution volume (m3), t: time (min.), F: Faraday’s constant 96 500 C mol$^{-1}$.

Current densities (J) 10-20 A m$^{-2}$ correspond to E: 20-30 kW h kg$^{-1}$ for mono-, bi-polar arranged anode: J 20-60 A m$^{-2}$ to 80 kWh kg$^{-1}$ [47].

In this study: E consumed calculated using equation 12, 13 [47]

For J$_{\text{max}}$ 30 mA cm$^{-2}$:

Current (I, Ampere) = J*anode area= 30*0.1 = 3 A.cm$^{-2}$ = 3*104 A.m$^{-2}$ (10)

For 30 min. EC operation, I (ampere), time (h), V cubic meter (m3)

\[
\text{E} = \text{I}*\text{V} = \frac{3+10^4 * 9.5}{96500 * 50} \times 10^9 = 3.1 \text{KWh.m}^{-3} \quad (11)
\]

2.6. Comparative studies to the literature

Microalgae recovery from wastewater at 2.0 kWh·kg$^{-1}$, 1.1 kWh·kg$^{-1}$ for Fe, Al anodes respectively [48]. Energy harvesting freshwater alga Chlorella vulgaris 2.1 kWh/kg reduced to 0.2 kWh/kg under saline conditions for marine alga Phaeodactylum tricornutum [49]. Al anodes showed highest harvesting efficiency 95.8% at 0.28 kWh/kg followed by copper, zinc, and iron [50]. Color removal 100% at 80 min., COD concentration 147 ppm, at 13.56 kWh/L. For durable biochar cathode, 0.0058 kWh/m3 for 90% phosphate removal that was 65% less than that of using carbon cathode [51]. 4.75 kWh/kg were required for removal nitrogen [52]. Energy consumed in our study 3.1KWh.m$^{-3}$ for removal 500 ppm AgNPs with %Re (97.20) and comparable to E consumption in removal heavy metal such as Cr(IV) 6.0kWh.m$^{-3}$ under salty conditions for marine alga Phaeodactylum tricornutum [49].

%Re 88%, 93.5%, 98.4% for antibiotics ciprofloxacin respectively; diffusion coefficient 6.79*10$^{-10}$ cm$^{-2}$ s$^{-1}$, specific surface area 12 m2 g$^{-1}$, density 1.7 g mL$^{-1}$. Anodes are low-cost commercial carbon steel (Iron) and aluminum (Al) of chemical composition analyzed by source Egyptian Copper Co., Alexandria, Egypt Table 6.

3. Experimental

3.1. Materials and methods

Synthetic metallic silver Ag$_x$NPs with zero oxidation state, 99.99% purity coated by carboxy methyl cellulose (CMC); spherical, nm particle size, zeta potential -27.1 mV (stable against aggregation), diffusion coefficient 6.79*10$^{-10}$ cm$^{-2}$ s$^{-1}$, specific surface area 12 m2 g$^{-1}$, density 1.7 g mL$^{-1}$. Anodes are low-cost commercial carbon steel (Iron) and aluminum (Al) of chemical composition analyzed by source Egyptian Copper Co., Alexandria, Egypt Table 6.
Cathodes: Pt. wire 52 mesh particle size, 0.050 inch height, 6 inch width; cheap conductive pencil electrode composite: 56% graphite, 30% clay porous poly Al-silicate (enhanced structural properties (crystal defects, disorder)), resin; multi-functional (OH, COOH) graphene oxide decorated by poly oxo metalate; graphite electrode recovered from a medium-sized dry battery. AgNPs and Pt purchased from Sigma Aldrich Co. Al, Fe electrodes from Egyptian Copper Co., Alexandria, Egypt. Pencil electrode obtained from local marketing Library.

Stock solution 1000 ppm AgNPs prepared in double distilled water (to remove interference contaminants). Test solutions 100-600 ppm AgNPs diluted from stock solution. High AgNPs concentrations examined simulated excessive discharged AgNPs in wastewater.

Figure 14 showed Lab. scale EC Plexiglas reactor 50 mL volume capacity and operational conditions. EC conducted at ambient temperature 25°C and 1.0 atm. pressure. DC current power supply (3.0V and 200 mA). Anode is Al or steel plate (1 cm x 1 cm) length and width. Anode surface was carefully step by step polished by using emery papers grades 600, 800 and 1200, washed by: ethanol for 5 min. to remove oxide films or contaminants followed by deionized water (DI), left air drying before EC.

The optimized exposed surface area of anode is 0.1 cm². Cathode (Pt. or graphite and pencil electrode) has variable surface area. High cathode to anode area ratio used to maximize J on anode surface and minimize energy consumption [57].

Investigated parameters included: Fixed factors (cathode: anode, distance, position and area ratio; temperature 25°C; solution volume 50 mL and agitation speed 50 rpm) and variable factors (pH; current density J; electrode materials; electrolysis time, and initial concentration).

Low concentration 0.1M NaCl improved current flow. pH adjusted using either 0.1M HCl or 0.1M NaOH.

EC cell operated for specified electrolysis time. Formed floc floated up treated water and removed by skimming. Slight sludge settled down at reactor bottom below clear treated water. EC performed in batch process under specified experimental parameters: ionic strength of solution, pH, applied potential and current density, nature of electrodes materials and initial concentration of AgNPs (Co).

EC system can be scaling up by using heat energy above 300°C from industrial processes, geothermal and nuclear power plants or solar heat, (converted into electricity using thermoelectric solid state generator).

Residual AgNPs after floc sedimentation and filtration in treated wastewater determined using UV-Vis. absorbance spectroscopy at maximum wavelength (λ_max) 430 nm. Using T70/T80 series UV/Vis. spectrophotometer PG Instrument Ltd., England. Absorbance is converted into concentration by applying Beers Lambert law using calibration curve for a series known concentration. Molar absorptivity coefficient is the slope of straight line of absorbance-concentration plot [35].

\[
% \text{Re} = \frac{C_x - C_f}{C_o} \times 100
\]

Where Co, C_f are initial and residual concentration respectively [58].

3.2. Characterizations

AgNPs, brown Fe-hydroxide-AgNPs and white gelatinous Al-hydroxide-AgNPs flocs and anode surfaces characterized using: Fourier Transformer Infrared (FTIR) spectroscopy, Bruker TENSOR 37 spectrophotometer, Model 1430 calibrated by PS film (1602 ±1cm⁻¹) at frequency range 4000-450 cm⁻¹, ambient temperature, sample processed with IR grade dry KBr and pressed into disc pellet; Surface analysis of AgNPs by H-7500 transmission electron TEM microscope (Hitachi, Japan), 20 kV acceleration voltage, sample droplet imaged after air drying on carbon-coated 200-mesh copper grid. Surface morphologies by scanning electron microscope, SEM JSM-IT200: chemical composition; microstructure of Al surface and Al floc by SEM Energy dispersive X-ray (EDS) analysis spectra at 15 kV, Oxford Inca X-act detector; Powder X-ray diffraction (pXRD) patterns at range of incidence-reflection angles 2θ: 5°-70°, 0.02° step, scan rate 1° min⁻¹, 25°C, Bruker D8 advance XR Germany diffractometer, 40 kV equipped with Cu anticahtode Target (Kα Cu illumination radiation, λ = 1.54060 Å [59]; Electrical resistivity, ρ of anode sample at 25°C by two probe method, stable DC power supply and electrometer (Keithley 610). Sample placed between two Cu electrodes and current flow measured as function of applied potential [60]. Electrochemical behavior of Al and Fe anodes in 100 ppm AgNPs investigated by cyclic voltammetry, Gamry Potentiostat USA reference 600, sequencer software version 6.20 setup in three-neck electrochemical cell. Reference electrode (RE): insoluble silver/silver chloride electrode: Ag/AgCl/(s), Pt counter electrode (CE) and Al or Fe working electrode (WE) and scan rate 20 mVS⁻¹[61].

4. Conclusion

For the first time low cost electrocoagulation reactor used for complete removal of toxic AgNPs at low energy consumption and low DC potential. %Re 97.2 for 200 ppm AgNPs using Al anode and pencil cathode at low current density 30 mA cm⁻² and energy consumption 3.1kWh.m⁻³. Aluminum is: promising efficient anode eco-friendly light metal, abundant, easily recycled, and has high electrical conductivity and low charge transfer resistance; easily formed Al(OH)₃ in aqueous solution due to high affinity to hydroxyl ions released from water electrolysis.
AUTHOR INFORMATION

Corresponding Author
Howida. A. Fetouh
Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
Mail: howida_fetouh@alexu.edu.eg
Mobile: 01203166565

Author Contributions
All authors have given approval to the final version of the manuscript.

Conflicts of interest
Authors have declared no conflict of interest between authors and any producers. The manuscript is advancement of knowledge.

References

