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1. INTRODCTION

Differential and integral equations are crucial in nonlinear ¥ = fi (t,lfftg(s,y(s),u(s)) ds), t € [0,T]. )
analysis. Many fundamental laws of physics and chemistry can
be formulated as differential and integral equations. In biology % = f, (t,u(®), u(xt)), a.e. te (0,Tland u(0) =uy. (2)

and economics, differential equations are used to model the H Firstl th ist f . luti
behavior of complex systems. Many authors are concerned with ere, mirstly, we prove fne existence ot a unique solution
the study of this kind of equations see [2-5-6-9-10-16]. ueC[0,T] of the prc_)blem (2) and study the continuous
Pantograph equation is a delay differential equation (DDE) depenQence of the SOI_Ut'On uony and u,. _Secondly, We prove
arising in electrodynamics. This type of equations have the existence of a unique solution of the integral equathn 1)
numerous applications in most fields, see [15-17-18-21-22-23]. and study the continuous dependence of y on u, §, A. Finally,
. L . we study Hyers-Ulam stability of our problem (1), (2).
Constrained problems are essential in the mathematical

depiction of real-world situations, where such problems are 2. Existence of solution

transformed into mathematical models. The relevance of Consider the following assumptions
handling constraints or control variables arises from the
unanticipated elements that persistently disrupt biological
systems in the real world; biological traits like survival rates

1) f1: [0,T]XR— R is continuous and satisfies the
Lipchitz condition.

might change as a result. The question of whether an ecosystem Ifi (6, 0)— fi (&%) < kylx — x| 3)
can survive those erratic, disruptive occurrences that happen for 2) f,:[0,T]xRxR — R is measurable int € [0,T] for all u
a short while is of practical significance to ecology, see [1-3-4- € R and satisfies the Lipchitz condition

7-8-11-12-13-14-15-19-20]. 12 CGupu) — fo (GUL )| < kp (Jug — Uyl+Hlu, — )
Now let ¥ , p € (0, 1) , L >0. Let C[O,T] be the class of @

continuous function defined on [0,T], the norm of xeC[0,T] is

given by. 3) g:0,T] xRXR — R is measurable in t € [0,T] forall y

and u € R and satisfies the lipschitz condition
lgt,y,u) — g6y, W] < ks (ly =yl +lu— ul) (5)
4) Let k= max {kl,kz,kg}.

x|l = supceo;ry [x ()]
Consider the nonlinear functional integral equation
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Remark
From (3) we have
) 1A= 1AE0)] < 1filt,x) = £i(t,0)] < kx|
and |fi(t,x(@®)| < k|lx®OI+ £ fi° = SuPefor | f1(t, 0)1.
Also, from (4) and (5) we can get
(i) 16w < k(u®Ol + [u@®h + £
f2" = supieror 1f2(t,0,0)].
(i) lgt, y, Wl < k(yOl+ [u@®D +9g°,
9" = Supepor 19(t,0,0)|.
Now, we study the problem (2).
2.1 The problem (2)
Here we study the initial value problem (2)
Theorem 1

Let the assumption (2) be satisfied, if 2kT<1, then there exists a
unique solution u € C[0, T] of the problem (2).

Proof.
Integrating (2), we obtain

ut) = u+ [ fo (s,u(s)u(xs)ds, t € [0,T]. (6)
Differentiating (6) we obtain (2) and from (2) we deduce
u(0) =uq.
Define the operator F by
Fu(t) = u, + f; fo (s,u(s), u(xs))ds. (7)
Let ue C[0,T], lett;, t,e [0, T]and |t,- t;| < & , then
[Fu(t,) — Fu(t,)| =
137 f2 (s, u(s),uGss))ds = [ /> (s, u(s), u(ws)) ds |

= | fo (s,u(s),u(¥s)) ds |

< [Tk (qus)| + luGs)) ds + 1t — 1"
<ty = 4|QE[ulD) + 1t — tlf"
Then we obtain
[Fu(t,)-Fu(ty)| <e.
This proves that F: C[0,T] — C[0,T].
Now, let u, & € C[0,T] be two solutions of equation (6), then
[Fu(®) = Fa@®)l = | f f, (s;u(s),u(xs)) ds —
Iy fals, (), u(xs))ds]
< klfot [u(s) — u(s)|ds +f0t |uCes) — u(xss)|ds |
S kT||lu—a||l+ kT||u—1l
< 2kT||u-—1ll
Then F is contraction [5] and (2) has a unique solution
ueC[0,T].
Definition 1

The solution u ¢ C [0,T] of (2) depends continuously on the
functions ¥, Uy if v € > 0,3 §(¢)>0, such that

max {|u, —uy”|, |y —¥" |} < 6.
Then

||u—u*| < €,

81
Alexandria Journal of Science and Technology, 2023, 1(2), 80-83

A constrained problem of a nonlinear functional integral equation subject to the pantograph problem

Where
w(t) =uy + ) fo (6w (s), u' (¥ s)ds.

Theorem 2 Let the assumptions of Theorem 1 be satisfied,
then the solution u € C[0,T] of (2) depends continuously
on ug and .

Proof.
lu(t) = (@©)] = [uo + [} f (s, uls), u(vs)) ds —ug —
f;fz(s,u*(s),u*(vr*s))ds|
< 6+ | fotfz (s, u(s), u(xs))ds — fotfz (s,u*(s), u*(x*s )ds|
< &+ |k f; [u(s) —u*(s)|ds + k fot |u(rs) — u*(x*s)| ds
< 8 + KT |lu—w'||+ kfot”u(xs) —u(¥*(s)) +
u(vr*(s)) — u*(vr*(s))”ds
< & + KT |lu—w'||+ kf0t|u(xs) —u(¥"(s))|ds +
kf0t|u(7r*(s)) —u(x"(s))|ds
< 8 + kT |lu—w| +kf0t(s+ llu —u*|l) ds
< & + kT |lu—uw'|| + keT + kT|lu — w’||
lu —u*|| < 2kT||lu — w*|| + 6; + keT

And
1 -2kD)||lu —u*|| < 6, +kTe
Then
% 81+KkT €
— <
=l = g5
Definition 2

Let the solution of (2) be exists, then approximate problem (2)
is Hyers-Ulam stable if Vv € > 0,3 §(¢)>0 and any solution
us of (2) satisfying.

|22 — fo(tus(), u, () | < 6. (8)
Then [lu —u|| < e

Theorem 3 Let the assumptions of Theorem 1 be satisfied, then
the problem (2) is Hyers-Ulam stable.

Proof.
Integrating both sides of (8), we obtain

—6T < us(t) — Uy — J, o(6,us(6),us(¥6))df < &T
Now,
u(t) — us ()] = [uo + , f; (6),u(8), u(x8) — u; (1)
< |u0 + [} £(0,u(8),u(x8) d6 — [ f,(6,us(6),us(x6))d6 +
15 £2(6,15(8), u5(56))d6 — us (1))
< 8T + | [, £>(6,u(®),u(x6))db — [ £,(6,us(6),us(x6))do|

< 8T + k [) |u(6) —ug(6)|do + k [, |u(x6) —
us(¥0)| do

< 6T + kT||lu —ug|| + kT||lu —ug ||
< 0T + 2kT||lu —ul].
Then
(1= 2kT)||lu —ug|| < 6T,
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and
ST
- < —— =
-l < —— e.
2.2 The initial value problem (1)
Theorem 4

Let the assumptions 1, 2 and 4 be satisfied, Let u be the solution
of (2), if A k*B T < 1, then the problem (1) has a unique
solution xe C[0,T].

Proof.
Define the operator F by

Fy(t) = (6 Af) g(s,y(s)  u(s))ds ©)
Let y € C[0,T], and for t,,t; € [0,T] such that |t,-t;|<&, then we
have

|Fy y(t2)- Fry(t)|= |fx (tz.7\f0ﬁtZ g(s,y(s),u(s))ds) —
it A [P g(s,y(s), u(s)) ds))|

< 1f o f) (s, (), us)) ds) -
fi (21 0] (s, ¥(9),u(s)) ds )
+ (A [ g(s,y(), u(s)) ds ) -
filt, A g(5,7(5),u()) ds)]
< Ak [ 1g(s,y(5),u())lds + 6

<6 +2k2 [2(1y(s)] + lu(s)Dds + Ak f;,?|g"| ds

8+ ARPCHYI+1ulDB(tz —t) + AkB (tz—t1)g" = &
& + Ak (lyll + |[ulDBs + 2kB 6 g = e

This proves that F: C[0,T]—CJ0,T].

Now, we prove that F is contraction. Lety, ¥ be two solutions
of (1), then

IFYQ-Fy (0] = Ifa(t, )" g (s, v(5),u(s))ds) -

fi(t, [ 9(s, 7(5), u(s)) ds))

< 2k [P19(5,y(5),u(s)) - g5, 7(5), u(s)) |ds

<1 k2 [Py(s) - 3(s)lds
<LE?BT |ly- .
Then F is Contraction [5] and (1) has a unique solution yeC
[0,T].
2.3 Continuous dependence
Definition 3

The solution ye C[0,T] of (1) depends continuously on A , B
and uif v e>0,3 6(e)>0 such that

max {Ju-u’l, -1, |8 — BT} < 6.

IN A

Then

Iy-yli <e,
Where
y'is the solution of (1)

YO =2 g,y (s)u(s) ds.
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Theorem 5 Let the assumptions of Theorem 1,2,3 be satisfied,
then the solution y € C[0,T] of (1) depends continuously
oni,pB,u".

Proof.
Iy®)-y O = Ifut [ g5, y(s), u(s))ds -
£t [ g (s, () u' () ds |
<k S g(s,y(s) uls)ds =47 [F (s, v (s),u"(s))ds |
<|kn [P g(s, (), uE)ds - kA[F g (s,7(5),u(s))ds+
K7 g (s,v(9),u(s))ds
K P g s,y (), ur(s)) d|
<K f, 9 (s, v u)ds| + K12 = 21 [} “1y(s) -
y*(s)|ds
K A=21 [ Jus) —w (s)lds
<KL, 19 (5,7(),u())lds+ K8 |y-y 15" ¢ +K5ju- u
BT
<Ake+ k28 BT |ly-y'|l+k2 6 B°T6.
Now
< kA etk28B°T|ly-y ||+ k28°T 62
Then
(1- K268 T)ly-y i< k1 & + k2B°T 62,
* k Ae+k?B* T8
-y IS ——%5e

1-k25B*T
Definition 4
Let the solution of (1) be exists then the problem (1) is Hyers-

Ulam stable if v € > 0,3 §(¢) > 0 and any approximate solution
y; of (1) satisfying

lys® — fult, Af 9(6,7,(6),u(6))d6)| < 8.
Then

lly-ysll< e,
Where

—8 <ys® — futA [ 9(6,:(6),u(6))d6) < §

Theorem 6 Let the assumptions of Theorem (4) be satisfied.
Then the problem (1) is Hyres-Ulam stable.

Proof.
YOV =1 Fit. 1f)" g(8,y(8),u(8))d6 ~yi(1) |
= [ fu(t, 1 9(6,y(6), u(8))d6 - fu(t, A[ g(6,(6), u(8))d6
it M 9(6,7,(0), u(6)) d6) - y(0)
<68 +Ifu(t, 1f 9 (6, y(6),u(6))d6) -
fi(t, [ 9(6,75(6),u(6))d) |
8+ 1K [7 y(6) — y5(6)Id6

S+HLKEBT [ly-yill
Then

IN

IN

ly-ysI< 8 + A K*BT [ly-ysll
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ALK BT) ly-ysll< &

1)
- < _
||y yS” — 1—Ak2BT €.
Example
Consider the following example
1 -s
y()=2 e cos?t += [ G+ y(s) +su(s))ds, te[0,1], (10)

-t
e O ey + % u (it) a.e., u(0)==.

te(0,1]  (11)

dt 2 5 6

Here we have:

fittx) = % e tcos?t + %x, thus |f; (t,x) — fi (£, %)| <
~|x — x|

4

g (Sy.U) =S+ 2 y(s) + 5 u(s), thus 1g(s,y,u) — g(s,5, )| <
(ly =l + lu —al)

folt 00, u(re) =251 + - u() + Lu (G, thus
Ife (6, uz) = fo(6 0, T < 5 () - @ (O] +
luz (6) = ().

Here we obtain, klzi , k2:§ , k3:§ B = ; =
%,andeT=§< 1

N =

1
1/1-:5 y Xo=

Clear all assumptions of Theorem 1 is satisfied, thus problem
(10)-(11) has unique solution.
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