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ABSTRACT: This paper explores novel concepts within perturbed models, focusing on their local stability 

analysis of fixed points. The investigation involves numerical simulations employing bifurcation diagrams and 

phase diagrams to substantiate findings and delineate intricate dynamics. By leveraging these computational tools, 

the research aims to validate its results comprehensively. Moreover, the theoretical implications of these new 

concepts are thoroughly scrutinized and compared with existing frameworks. This comparative analysis sheds light 

on the advancements introduced by the proposed models, highlighting their potential contributions to the field. 

Through rigorous examination and validation via simulations and theoretical scrutiny, the study not only confirms 

the stability properties of fixed points under perturbations but also elucidates the broader implications of these 

findings. Furthermore, the utilization of bifurcation and phase diagrams serves to illustrate the complex behaviors 

and transitions observed within the models, offering a visual representation that enhances the understanding of the 

dynamics involved. Overall, this paper contributes to advancing the understanding of perturbed models by 

integrating theoretical insights with numerical validation, thus paving the way for future research in this area. 
 

 

1. INTRODCTION 

 

Perturbation theory plays a crucial role in dynamical systems, 

facilitating the approximation of solutions to analytically 
intractable problems. It is extensively employed in the 

investigation of stability, resonance phenomena, and 
bifurcations across physical, biological, and engineering 
systems [1-3]. 

Dynamical systems theory studies the behavior of systems over 
time, offering a powerful framework for modeling complex 

phenomena in physics, biology, economics, and engineering. It 
enables the analysis of dynamic behavior through differential 

equations, bifurcations, chaos theory, and stability analysis. By 
exploring these concepts, researchers gain insights into the 

intricate dynamics of natural and artificial systems, unraveling 
the principles that govern complex phenomena and enhancing 
our understanding of the world [4-6]. 

Bifurcation, a fundamental concept in dynamical systems 
theory, refers to qualitative changes in system behavior as 

parameters vary. It can lead to complex behaviors like chaos, 

periodic orbits, or stable equilibria. Understanding bifurcations 
is essential for predicting and controlling system dynamics and 

exploring the boundaries between order and chaos [7-8]. 

Chaos theory, a captivating aspect of dynamical systems, 

investigates systems that exhibit seemingly random and 
unpredictable behavior. It uncovers underlying order and 

patterns, highlighting sensitivity to initial conditions. Chaos 
theory profoundly impacts the understanding of complex 

systems in nature and society, such as weather patterns, 
population dynamics, and financial markets [9-10]. 

2. The First Model: 

Consider the following equation: 
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2.1. First Case of Perturbation 

Let there exist a perturbation as 
 

.
1

y a x yn nn
 


ò  

 

Then the model (2.1) can be written as  
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 2.1.1. Fixed Points 
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2.1.2. Stability Analysis 

The Jacobin matrix is given by 
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The characteristic equation is given by 

2 2 2[( 1) (1 ) 4 ] 0.a        ò ò ò  

Lemma 2.1. [11]  

Let  2( )F P Q      be the characteristic equation 

of eigenvalues associated to the Jacobin matrix evaluated at a 
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Lemma 2.2. [11] 
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By applying lemma (2.1) and lemma (2.2), we deduce that the 
model (2.1) is 

1. Stable if 2 2[( 1) (1 ) 4 ] 1a    ò ò , 
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2.2. Second Case of Perturbation     
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3. The Second Model 

Consider the following equation  
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Figure 1.  Bifurcation and phase diagram of model (2.1) at a=1, eps=1. 

Figure 2. Bifurcation and phase diagram of model (2.1) at a=1, eps=0. 
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3.1.1. Fixed Points 
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Figure 3.  Bifurcation and phase diagram of model (3.1) at a=1, eps=0.1. 
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Conclusion 

In conclusion, this paper discussed new concepts of some 

perturbed models. The local stability analysis of the fixed points 
was provided. The utilization of numerical simulations, 

including bifurcation and phase diagrams, substantiates the 
theoretical findings and reveals additional complex dynamical 

behaviors. The comparative analysis of the theoretical outcomes 
underscores the significance and applicability of these new 

concepts, contributing to a deeper understanding of the intricate 
dynamics within perturbed systems. 
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