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ABSTRACT: This paper explores novel concepts within perturbed models, focusing on their local stability
analysis of fixed points. The investigation involves numerical simulations employing bifurcation diagrams and
phase diagrams to substantiate findings and delineate intricate dynamics. By leveraging these computational tools,
the research aims to validate its results comprehensively. Moreover, the theoretical implications of these new
concepts are thoroughly scrutinized and compared with existing frameworks. This comparative analysis sheds light
on the advancements introduced by the proposed models, highlighting their potential contributions to the field.
Through rigorous examination and validation via simulations and theoretical scrutiny, the study not only confirms
the stability properties of fixed points under perturbations but also elucidates the broader implications of these
findings. Furthermore, the utilization of bifurcation and phase diagrams serves to illustrate the complex behaviors
and transitions observed within the models, offering a visual representation that enhances the understanding of the
dynamics involved. Overall, this paper contributes to advancing the understanding of perturbed models by

integrating theoretical insights with numerical validation, thus paving the way for future research in this area.

1. INTRODCTION

Perturbation theory plays a crucial role in dynamical systems,
facilitating the approximation of solutions to analytically

exploring the boundaries between order and chaos [7-8].
Chaos theory, a captivating aspect of dynamical systems,

intractable problems. It is extensively employed in the investigates systems that exhibit seemingly random and
investigation ~ of  stability, ~resonance phenomena, and unpredictable behavior. It uncovers underlying order and
bifurcations across physical, biological, and engineering patterns, highlighting sensitivity to initial conditions. Chaos

systems [1-3].

Dynamical systems theory studies the behavior of systems over
time, offering a powerful framework for modeling complex
phenomena in physics, biology, economics, and engineering. It
enables the analysis of dynamic behavior through differential
equations, bifurcations, chaos theory, and stability analysis. By

theory profoundly impacts the understanding of complex
systems in nature and society, such as weather patterns,
population dynamics, and financial markets [9-10].

2. The First Model:

Consider the following equation:

exploring these concepts, researchers gain insights into the 2

intricate dynamics of natural and artificial systems, unraveling Xn+1=1_px n-1' n=012,. (2.1)
the principles that govern complex phenomena and enhancing x (0) = x x (1) = x

our understanding of the world [4-6]. 0 -1

Bifurcation, a fundamental concept in dynamical systems let y , =X, _4 then,

theory, refers to qualitative changes in system behavior as

parameters vary. It can lead to complex behaviors like chaos, X1 1-py g,

periodic orbits, or stable equilibria. Understanding bifurcations
is essential for predicting and controlling system dynamics and
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2.1. First Case of Perturbation
Let there exist a perturbation as

Ynhil=2aXn +0Yn-

Then the model (2.1) can be written as
Xn+1:1_py"2"
Yhil=aXn +0yYn,
x(0)=xqg, Y(O) =Yg,

2.1.1. Fixed Points

X :1_pyr2] ’
Yy =axXp +0Yn -

*

1

*

Therefore, we have two fixed points (x ,yI) and (x2,y;)

where,

1-0,2 1-0\4 1-0 1-06 1-0,2 1-¢
e T) + T) +4’O(T) y*:_(T)+"(T) +4P(TO)
1 1 2p

2p
B
2p

x2:—
2.1.2. Stability Analysis
The Jacobin matrix is given by

Yy

ko
J(xl,yl)—[ ‘?yl}.
a o

The characteristic equation is given by

22 —oa+[(O0-D+J@-®»2 +4pa2]=0.
Lemma 2.1. [11]
Let F(a) = A2+ Pa +Q be the characteristic equation
of eigenvalues associated to the Jacobin matrix evaluated at a
fixed point (x*,y*) then (x*,y*) is
1. Asinkif 2 <1 and Ay <1,
A source if q>1 and Ay >1,
3. A saddle if 4 >1 and Ay <1 OF (/’Ll <1 and
12 >1),
4. A non-hyperbolic if either A =lor 2, =1.
Lemma 2.2. [11]

Let F(1)=A2+PA-+Qsuppose that
and F (A) =0 has two roots 11 and 12 then

F@)>0

1. F(1>0and Q <1 ifand only if 4 <1 and

2.2<1

2. |:(_1),<o if and only if g1>1 and 12<1 or
and ,
(21<1 12>1)
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3. F(-1)=>0 and Q >1 ifand only if j1>1 and

/12>1-

By applying lemma (2.1) and lemma (2.2), we deduce that the
model (2.1) is

1. Stableif [(0—1) +/@A-0)2 + 4pa2]<1,
2. Unstable if [(0-1) +(L—0)2 + 4pa’]>1.
2.2. Second Case of Perturbation

Let Y =—X n-1 in equation (2.1). Moreover, let there exist

a perturbation as
Then, the model (2.1) can be written as

2
Xntr=1=pPYn,

Y41 ="@Xn +0Ynp,
X(O)=X01 y(0)=y0
2.2.1. Fixed Points
X :l_py%’

* * * *
Therefore, we have two fixed points (Xl Y 1 ) and (X 2 2)

where,
RN R C I = Chvy
Xy == ( 20 ) ¥Vi= T :
. 0-1 2+4p . (E' 2+4p
2 = .

2.2.2. Stability Analysis
The Jacobin matrix is given by

*
0 —2,0)/1

‘](X11y1): .
—a o

The characteristic equation is given by

22 —on+[(0-1) + (-1 + 4pa’]=0.

By applying lemma (2.1) and lemma (2.2), we deduce that the
model (2.1) is

Stable if [(5—1) —\(1-8)° +4pa’] <1, see (Figures 1&2)
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3. The Second Model

let y, =X n-1 then,
Consider the following equation

Xpne1=1-pXpXpg. n=012.. n-+1

3.1) _
x (0) = xg, x(-1) =x_4, Y41l =Xn-

0.5 T T T T

"iv‘."-"
n . Ly ity 1 TRE . .
0 0.1 0.2 0.3 0.4 X 0.7 -15 -1 05 0 0.5 1

Figure 1. Bifurcation and phase diagram of model (2.1) at a=1, eps=1.
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Figure 2. Bifurcation and phase diagram of model (2.1) at a=1, eps=0.

3.1. First Case of Perturbation Then the model (3.1) can be written as

Let there exist a perturbation as _
xistap Xnt1 =1=PXn¥Yn,

y =aXp +0yp +C. _ R
n+1 n n Y41 =@Xp +0yp +C,

X(O):X()v y(0)=y0
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3.1.1. Fixed Points

X =1-pXn¥n
y =aXp +Yp+C

* * * *
Therefore, we have two fixed points (x1,yq) and (x,,y,)

where,
o) -9 -4plpe (-] y( 1 j -9 -9 4ol -]
1 2 17145 2
¢ A -8 -4ple- ) y*_( L ] i -4 -4ple-g-]
a 2 AV 2
p 0 p

3.1.2 Stability Analysis
The Jacobin matrix is given by

* *
J(xl,yl){ e T 1}-
1 )
The characteristic equation is given by
2 * . * *
A +(pyl —o)/'i.+[pxl—0pyl]=0.

By applying lemma (2.1) and lemma (2.2), we deduce that the
model (3.1) is

* *
1. Stableif [pxl—épy1]<l,
* *
2. Unstable if [pxl—()pyl]>1.

3.2. Second Case of Perturbation

Let ypn =-X,_1 in equation (3.1) . Moreover, let there exist a

perturbation as
Y41 = —@Xp +0yp +C.

Then, the model (3.1) can be written as

5
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Xn+1:1+/3xnyn ,
Ynl = Xn +0yp +C,
X(0)=X0 :y(o)=)’0
3.2.1. Fixed Points
X =1+ pXp¥Yn
y =-aXp +0yp +C
Therefore, we have two fixed points (X: ) yf ) and
(x;,y;) where,

o (120 +-0% 4ploo--9] x (1) [@-0) +(1-9°-4plp-(-0)]
Xq = Y= ol 2% +C

2p

o (1-9) -y1-9°-4plp- (-] [ 1 ]{ <(1—<>) - (1—6)2—4p[pc—(1—o>]> ]
Xy = Yo=| |- +C
2p 1-0 2p

*
PXq |
o

2'2 —[p Yq —C‘Djﬁ+[pxl —op yl]:0

3.2.2. Stability Analysis
The Jacobin matrix is given by

*
* *

The characteristic equation is given by

By applying lemma (2.1) and lemma (2.2), we deduce that the
model (3.1) is

* *
1. Stableif [pxl +0p yl] <1, see (Figures 3&4).

* *
2. Unstable if [le +0p yl] >1, see (Figures 3&4).

25 3 3.5

Figure 3. Bifurcation and phase diagram of model (3.1) at a=1, eps=0.1.
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Figure 4. Bifurcation and phase diagram of model (3.1) at a=1, eps=0.

Conclusion

In conclusion, this paper discussed new concepts of some
perturbed models. The local stability analysis of the fixed points
was provided. The utilization of numerical simulations,
including bifurcation and phase diagrams, substantiates the
theoretical findings and reveals additional complex dynamical
behaviors. The comparative analysis of the theoretical outcomes
underscores the significance and applicability of these new
concepts, contributing to a deeper understanding of the intricate
dynamics within perturbed systems.
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