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ABSTRACT: This study aims to investigate the effects of a non-singular fractional derivative on the 

thermomechanical responses of a one-dimensional thermoviscoelastic cylinder cavity problem. Using the Mittag-
Leffler function as a relaxation function in mathematical models provides a more precise and comprehensive 

depiction of the behavior of thermo-viscoelastic materials. The boundary surfaces of the cylinder cavity are 
traction-free and associated with thermal shock. The analytical solution in the transformed domain is derived using 

a combination of direct approaches and Laplace transform techniques. We present a systematic study of traveling 

discontinuities in a hereditary thermoelastic space at different values of fractional order parameter 𝛼. The study 

shows that waves in this model travel at finite speeds. This aspect is new for fractional models. Finally, we have 
constructed a conclusion for a specific problem based on the numerical results and accompanying 3D graphics, as 
well as discussed, the effect of the deformation on the area of the cross-section of the cylinder cavity. 

 

1. INTRODCTION  

The growing use and progress of polymers and composite 
materials in recent years has guaranteed the ongoing relevance 

of researching linear viscoelastic theory. Materials with both 
viscous and elastic properties are studied in terms of 

viscoelasticity. After the force producing distortion is removed, 
an elastic material returns to its former shape; a viscous 

substance does the opposite. These materials must show that the 
applied force and the deformation that results are clearly 

correlated in order to be quantified. Time, temperature, and 
loading rate affect the rheological properties of linear 

viscoelastic materials. The convolutional integral, which 
considers input history including both current and past inputs, 
may be used to define the viscoelastic response.  

Time-dependent material characteristics have been thoroughly 
studied by Tschoegl [1]. The linear viscoelastic behavior as 

described by a mechanical model was provided by Gross [2]. By 
their study, Atkinson and Craster [3] have improved our 

knowledge of fracture mechanics and its application in 
viscoelastic materials. Non-linear theory is well studied in the 
work of Rajagopal and Saccomandi [4]. 

An important basis for modeling many physical and engineering 
processes has been the basic idea of the Fourier law of heat 

conduction [5]. Known as "second sound," some solid 
conductors transmit heat over time with wave-like behavior as 

opposed to the more typical diffusion. This phenomenon has 
been carefully studied and recorded by the literature [5] and its 

associated sources. Consequently, wave-like events cannot be 
explained by the diffusivity that is present in the Fourier 

equation across all time scales. As such, it is uncertain whether 
the short-time domain heat transfer studies can be well 

simulated by the Fourier law. Such situations need either a 
different constitutive rule or a quantitative adjustment. Known 

by most as the telegrapher equation, the Maxwell-Cattaneo-
Vernotte equation is a mathematical formula that seamlessly 

transitions from wave-like to diffusion-like behavior by 
including a time component. Long term, this equation 

approaches the traditional Fourier law and short term, it 
faithfully simulates a wave with a restricted speed. Generalized 

thermoelasticity with a single relaxation time was initially 
proposed by Lord and Shulman [6] to characterize the behavior 
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of an isotropic body. Sherief et al. [7-10] investigate the 
theoretical study of thermal and elastic reactions in an infinite-

length cylinder under thermal and mechanical stresses. They use 
the generalized thermoelasticity framework to improve 
prediction accuracy by including thermal relaxation time. 

The coupled theory of thermo-viscoelasticity was introduced by 
Kovalenko and Karnaukhov in [11]. El-Karamany and Ezzat  [12] 

and Ezzat et al. [13] have developed generalized thermo-
viscoelasticity models with one or two relaxation times, but 

without consideration for volume relaxation effects. Ezzat and 

El Karamany [14] have made theoretical contributions to the 
field, including uniqueness theorem proofs in various situations. 

Furthermore, El-Karamany and Ezzat [15] have investigated the 
extended thermo-viscoelastic theory's propagation of solution 

discontinuities. El-Karamany and Ezzat [16, 17] used a linear 
micropolar electro-magnetic thermoelasticity model with two 

relaxation times to come up with the idea of boundary elements 
and the reciprocity and uniqueness theorems. Ezzat et al. [18] 

investigated the effects of relaxation on the volume 
characteristics of an electrically conducting viscoelastic 

material. Ezzat and Awad  [19] develop a linear theory of 
micropolar thermo-viscoelasticity with mass diffusion, proving 
related theorems.  

Many current models of physical events have been proven to be 
changed using fractional calculus. It has been shown by Caputo 

& Mainardi [20, 21] and Caputo [22] that the description of 
viscoelastic materials using fractional derivatives matches 

experimental data well. Moreover, they have shown a 
relationship between linear viscoelasticity principles and 

fractional derivatives. Many studies have produced fractional 
heat conduction models [23-33] and fractional viscoelastic 

models [34, 35]. The behavior of thermo-viscoelastic materials 
is described mathematically by Ezzat et al. [36], Hendy [37], 

and Li et al. [38]. Both heat conduction and viscoelasticity are 
included in these models along with the fractional order effects. 

Still, the volumetric properties of the material have been 
disregarded in relation to the relaxing effects. 

In the field of thermo-viscoelasticity [39-42], the integral form 

of the equations demonstrates a close relationship between 

stress, strain, and temperature. Stress is represented as a 
function that changes over time and considers the impact of 

strain and temperature using relaxation functions. The relaxation 
function describes the time-dependent alteration in the 

mechanical behavior of materials caused by strain and 
temperature. It enables the determination of stress distribution 

by considering the past strain and thermal fluctuations. By 
subjecting the thermo-viscoelastic material to complicated 

thermal and mechanical loads, it is possible to accurately 
anticipate its entire response. Atangana and Baleanu [43] 

maintained "The non-singular kernel in integral operator will be 
helpful to discuss real world problems and it also will have a 

great advantage when using the Laplace transform to solve 
some physical problems with initial conditions and good for 

describing the dynamics of systems with memory effect for 
small and large times". Using the Mittag-Leffler function [44] 

instead of the exponential relaxation function in mathematical 
models provides a more precise and comprehensive depiction of 

the behavior of thermo-viscoelastic materials. The conventional 
exponential function is employed to depict the process of 

relaxation in materials, elucidating the decline of stress over 
time in a swift and precise manner. This behavior is 

characteristic of materials that exhibit a straightforward linear 
viscoelastic response. Conversely, the Mittag-Leffler function 

extends the exponential function and can depict more intricate 
behaviors. It offers versatility in modelling the decay pattern, 

enabling the inclusion of long-lasting effects that do not 
diminish as rapidly as in the exponential model. This more 

accurately represents the behavior of actual materials, which 

may have extended time delays and more intricate interactions. 

The influence of the fractional order derivative 𝛼 on the 
behaviour of viscoelastic materials, especially in material 

sciences, biological tissues, Geological materials and 
engineering contexts, is well illustrated in daily real-life 

applications [45, 46]. Within the domain of polymers and 
composites, fractional analysis provides a precise description of 

intricate viscoelastic phenomena. The value of this parameter 

determines the varied responses patterns the materials exhibit 
under various thermomechanical effects. Polymers with long-

term memory effects, such as those with prolonged creep under 

a constant load, exhibit low values of 𝛼, leading to a gradual 
accumulation of deformation over time. On the other hand, 

polymers that quickly respond to stress and rapidly stabilize 

have significant 𝛼 values, which indicate a shorter memory and 

behavior that closely mimic thermoelastic theory. In biological 
tissues, such as skin and muscles, scarred or ageing tissues 

maintain their deformation for extended periods of time when 

the load is removed, which is indicated by lower 𝛼 values. 

Conversely, healthy tissues such as youthful muscles rapidly 

recover their form, which indicates high 𝛼 values. Geological 

materials that display a progressive and uninterrupted response 
to stress, such as the slow displacement of rocks caused by the 

force of mountains, are associated with lower 𝛼 values. 

Moreover, geological materials that exhibit rapid responses to 

stress variations, such as sandy soils under varying 

thermomechanical effects, have high 𝛼 values. Understanding 

the influence of 𝛼 is crucial for developing new materials with 

specific mechanical properties, analysing structural failures in 
civil engineering. 

Recently, Sherief et al. [47, 48] proposed a novel approach to 
the study of generalized fractional hereditary thermoelasticity 

that includes the Mittag-Leffler relaxation function. To 
demonstrate the results, we resolved a one-dimensional thermo-

viscoelastic problem involving the cylinder cavity. The 
governing equations of our new model are analytically solved 

using a Laplace transform. The solution in the transformed 
domain is obtained, and then the Laplace transform is 

numerically inverted using a Fourier expansion technique              
[49-52]. In this process, we have used PMMA as the 

viscoelastic material and copper as the elastic material. 
Ultimately, based on the numerical results and accompanying 

graphics, a conclusion has been obtained on the thermo-
viscoelasticity model. 

2. The governing equation of the thermoviscoelastic 

model [47, 48] 

We study a continuous viscoelastic medium enclosed within a 

volume 𝑉 and bounded by a closed surface 𝑆. Denote a point's 

position vector as 𝒙(𝑥1 , 𝑥2, 𝑥3). It is subject to a heat source of 



 

184 
Alexandria Journal of Science and Technology, 2023, 2(2), 182–192                                                                                                                Online ISSN: 2974-3273 

 

 
Article 

strength 𝑄 per unit mass and a body force 𝐹𝑖 per unit mass. The 

strain tensor components 𝑒𝑖𝑗, which are defined at each point of 

the body by 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), (1) 

where 𝑒𝑖𝑗 = 𝑒𝑗𝑖, 𝑒 = 𝑒𝑖𝑖 = 𝑢𝑖,𝑖 is the cubical dilation and 𝑢𝑖 are 

the components of the displacement vector. The vector's 

component in the 𝑥𝑖 − direction is denoted by the subscript 𝑖 
and the standard notations: (∙),𝑖 = (𝜕 𝜕𝑥𝑖⁄ )(∙), where 𝑥𝑖 is the 

system coordinates. 

For a linear thermoviscoelastic material, we consider the stress 

tensor components 𝜎𝑖𝑗(𝒙, 𝑡), which are related to 𝑒𝑖𝑗(𝒙, 𝑡) and 

temperature 𝜃(𝒙, 𝑡) by a convolution integral as follows: 

𝜎𝑖𝑗(𝒙, 𝑡) = 𝜏𝛼 ∫ 𝐶𝑖𝑗𝑘𝑙𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕𝑒𝑘𝑙(𝒙,𝜐)

𝜕𝜐
𝑑𝜐

𝑡

0
−

𝛼𝑇𝜏𝛼 ∫ 𝛾𝑖𝑗𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕𝜃(𝒙,𝜐)

𝜕𝜐
𝑑𝜐

𝑡

0
,  

(2) 

where the variable 𝜃 is defined as the difference between the 

absolute temperature 𝑇 and the reference temperature 𝜗0. It is 
required that the absolute value of this difference divided by the 

reference temperature, |
𝑇−𝜗0

𝜗0
|, is much smaller than 1, 𝛼𝑇 is the 

coefficient of linear thermal expansion, 𝜏 is a positive time 

constant for the ratio of the shear viscosity to Young's modulus, 

𝐸𝛼 represents the relaxation function related to the mechanical 

stress-strain response, 0 < 𝛼 < 1, is the fractional order 

parameter characterizing the material's viscoelastic behavior, 

𝐶𝑖𝑗𝑘𝑙 and 𝛾𝑖𝑗 are both tensorial functions of the material, with 

𝐶𝑖𝑗𝑘𝑙 being a fourth-order tensor and 𝛾𝑖𝑗 being a second-order 

tensor. Furthermore, it is presumed that the subsequent 
symmetry relations are valid: 

(𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗  = 𝐶𝑖𝑘𝑗𝑙 = 𝐶𝑗𝑙𝑖𝑘 , 𝛾𝑖𝑗 = 𝛾𝑗𝑖). 

By substituting the expression from Equation (2) into the 
equation of motion, which is in the given form, 

𝜎𝑗𝑖,𝑗 + 𝜌𝐹𝑖 = 𝜌𝑢̈𝑖 , (3) 

Here, 𝜌  represents the density, which is independent of time 

𝑡 and 𝐹𝑖 is the vector component of the body force. The dot 

symbol indicates differentiation with respect to time. Therefore, 
we acquire 

𝜌𝑢̈𝑖 = 𝜌𝐹𝑖 + 𝜏𝛼 ∫ 𝐶𝑖𝑗𝑘𝑙𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕𝑒𝑘𝑙,𝑗(𝒙,𝜐)

𝜕𝜐
𝑑𝜐

𝑡

0
−

𝛼𝑇𝜏𝛼 ∫ 𝛾𝑖𝑗𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕𝜃,𝑗(𝒙,𝜐)

𝜕𝜐
𝑑𝜐

𝑡

0
.  

(4) 

We can express the equation representing the balance of entropy 

density 𝑆 as follows: 

−𝑞𝑖,𝑖 + 𝜌𝑄 = 𝜌𝜗0

𝜕𝑆

𝜕𝑡
, (5) 

where 𝑞𝑖 represents the heat flux vector, and 𝑆 represents the 
entropy per unit mass.  

Let us assume that a thermally conducting viscoelastic solid, 
which is experiencing minor strain and small temperature 
fluctuations [53],  may be described by the following equation: 

𝜌𝜗0𝑆 = 𝜌𝑐𝐸 𝜃 + 𝛼𝑇𝜏𝛼𝜗0 ∫ 𝛾𝑖𝑗 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕𝑒𝑖𝑗(𝒙,𝜐)

𝜕𝜐
𝑑𝜐

𝑡

0
,  (6) 

where 𝑐𝐸 is the specific heat at constant strain. We notice that, 

the constitutive equation (2) and the entropy balance equation 
(6) coincide on equations (3.8) and (3.9) in Ref. [54]. 

Hence, the energy balance equation is obtained from Eqs. (5) 
and (6), as 

−𝑞𝑖,𝑖 + 𝜌𝑄 =
𝜕

𝜕𝑡
(𝜌𝑐𝐸 𝜃 + 𝛼𝑇𝜏𝛼𝜗0 ∫ 𝛾𝑖𝑗𝐸𝛼 (−

𝛼

1−𝛼
(𝑡 −

𝑡

0

𝜐)𝛼)
𝜕𝑒𝑖𝑗(𝒙,𝜐)

𝜕𝜐
𝑑𝜐),  

(7) 

The above equations are supplemented by modified Fourier law 

[6, 55], namely 

(1 + 𝜏𝑞
 𝜕

𝜕𝑡
) 𝑞𝑖(𝒙, 𝑡) = −𝑘𝑖𝑗𝜃,𝑗(𝒙, 𝑡),  (8) 

where 𝜏𝑞 ≥ 0 is the relaxation time and 𝑘𝑖𝑗  is a thermal 

conductivity. 

Operate with div-operator on both sides for the previous 
equation and using Eq. (7), we obtain 

(𝑘𝑖𝑗𝜃,𝑗)
,𝑖

= (
𝜕

𝜕𝑡
+ 𝜏𝑞

 𝜕2

𝜕𝑡2
) (𝜌𝑐𝐸 𝜃 + 𝛼𝑇𝜏𝛼𝜗0 ∫ 𝛾𝑖𝑗𝐸𝛼 (−

𝛼

1−𝛼
(𝑡 −

𝑡

0

𝜐)𝛼)
𝜕𝑒𝑖𝑗(𝒙,𝜐)

𝜕𝜐
𝑑𝜐) − 𝜌 (𝑄 + 𝜏𝑞

 𝜕𝑄

𝜕𝑡
).  

(9) 

Here, all functions are dependent on both the variables 𝒙 and 𝑡. 

The summation notation is employed while disregarding the 
micro rotations. 

Assuming an isotropic body, the tensorial functions can be 
expressed as [41, 47]  

𝐶𝑖𝑗𝑘𝑙 = (𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘))  (10) 

𝛾𝑖𝑗 = (3𝜆 + 2𝜇)𝛿𝑖𝑗, 𝑘𝑖𝑗 = 𝑘𝛿𝑖𝑗,  (11) 

where 𝜆, 𝜇 are Lame's constants, 𝛿𝑖𝑗 is the Kronecker delta. 

The integral terms in the right-hand side of the previous 
governing equation denote a non-local fractional derivative with 

a non-singular kernel, which was introduced by Atangana and 
Baleanu [43]. 

3. Formulating the problem 

Let us examine a thermoviscoelastic solid that is homogeneous 

and has the same properties in all directions. These solids fills 
the space within a hollow circular cylinder that is indefinitely 

long. The cylinder's inner radius is 𝑎, and its outer radius is 𝑏, 

where 𝑎 < 𝑏. A cylindrical coordinate system (𝑟, 𝜑, 𝑧) is used, 

with the 𝑧-axis serving as the cylinder's axis. It is presumed that 

the medium is initially in a state of rest and there are no external 

forces or sources of heat. Traction-free boundary surfaces of the 
cylinder are subject to a thermal shock disturbance that is time-

dependent. Based on the physics involved, all the physical 

quantities depend solely on the variables 𝑟 and 𝑡 only. To solve 

the problem, we need obtain the radial displacement component 

𝑢𝑟 and the non-zero stress components 𝜎𝑗𝑖 in the specified 

region. The displacement vector 𝐮 is defined by its components 
〈𝑢𝑟(𝑟, 𝑡), 0, 0〉. The governing equations for generalized 

isotropic thermal viscoelastic over the domain (𝑟, 𝜑, 𝑧, 𝑡) ∈
[𝑎, 𝑏] × [0,2𝜋] × (−∞, ∞) × [0, ∞)  are as follows: 

(i) The strain tensor includes non-vanishing components, 
as indicated by 

𝑒𝑟𝑟 =
𝜕𝑢𝑟

𝜕𝑟
, (12) 

𝑒𝜑𝜑 =
𝑢𝑟

𝑟
, (13) 

and the cubical dilatation 𝑒 is given by the following 
expression: 
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𝑒 =  div 𝐮 =
1

𝑟

∂(𝑟𝑢𝑟)

∂ 𝑟
. (14) 

(ii) The equation of motion, in the absence of any external 
forces, can be represented in vector form [13] 

𝜌𝐮̈(𝑟, 𝑡) = 𝜇𝜏𝛼 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕

𝜕𝜐
∇2𝐮(𝑟, 𝜐)𝑑𝜐

𝑡

0
+

(𝜆 + 𝜇)𝜏𝛼 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕

𝜕𝜐
∇𝑒(𝑟, 𝜐)𝑑𝜐

𝑡

0
−

(3𝜆 + 2𝜇)𝜏𝛼𝛼𝑇 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕

𝜕𝜐
∇𝜃(𝑟, 𝜐)𝑑𝜐

𝑡

0
,  

(15) 

where ∇2=
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) is Laplace’s operator, where all functions 

depend on 𝑟, 𝑡. 

An alternative expression for the equation mentioned above, 

using cubic dilatation 𝑒, may be derived by applying the 
divergence operator to both sides. 

𝜌𝑒̈(𝑟, 𝑡) = (𝜆 + 2𝜇)𝜏𝛼 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 −

𝑡

0

𝜐)𝛼)
𝜕 

𝜕𝜐
∇2𝑒(𝑟, 𝜐)𝑑𝜐 − (3𝜆 + 2𝜇)𝜏𝛼𝛼𝑇 ∫ 𝐸𝛼 (−

𝛼

1−𝛼
(𝑡 −

𝑡

0

𝜐)𝛼)
𝜕

𝜕𝜐
∇2𝜃(𝑟, 𝜐)𝑑𝜐,  

(16) 

(iii) The heat conduction equation without a heat source 

𝑘∇2𝜃 = (
𝜕

𝜕𝑡
+ 𝜏𝑞

 𝜕2

𝜕𝑡2
) (𝜌𝑐𝐸𝜃 + (3𝜆 +

2𝜇)𝜏𝛼𝛼𝑇𝜗0 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝜕𝑒

𝜕𝜐
𝑑𝜐

𝑡

0
).  

(17) 

(iv) The non-vanishing components of the stress tensor 
are given by 

𝜎𝑟𝑟(𝑟, 𝑡) = 2𝜇𝜏𝛼 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝑡

0

∂ 

∂𝜐
(

∂𝑢𝑟

∂𝑟
) 𝑑𝜐 +

𝜆𝜏𝛼 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝑡

0

∂𝑒

∂𝜐
𝑑𝜐 − (3𝜆 +

2𝜇)𝜏𝛼𝛼𝑡 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

∂𝜃

∂𝜐
𝑑𝜐.

𝑡

0
  

(18) 

𝜎𝜑𝜑(𝑟, 𝑡) = 𝜆𝜏𝛼 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝑡

0

∂𝑒

∂𝜐
𝑑𝜐 −

(3𝜆 + 2𝜇)𝜏𝛼𝛼𝑡 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

∂𝜃

∂𝜐
𝑑𝜐.

𝑡

0
  

(19) 

𝜎𝑧𝑧(𝑟, 𝑡) = 𝜆𝜏𝛼 ∫ 𝐸𝛼 (−
𝛼

1−𝛼
(𝑡 − 𝜐)𝛼)

𝑡

0

∂𝑒

∂𝜐
𝑑𝜐 −

(3𝜆 + 2𝜇)𝜏𝛼𝛼𝑡,  
(20) 

associated with the homogeneous initial conditions and the 

thermal and mechanical boundary conditions can be expressed 
as follow: 

𝜃(𝑎, 𝑡) =
1

𝛼𝑡
𝑓1(𝑡), 𝜃(𝑏, 𝑡) =

1

𝛼𝑡
𝑓2(𝑡), 𝑡 ≥ 0                          (21) (21) 

𝜎𝑟𝑟 (𝑎, 𝑡) = 𝜎𝑟𝑟 (𝑏, 𝑡) = 0, 𝑡 ≥ 0.                                         (22) (22) 

where 𝑓𝑖(𝑡), (𝑖 = 1, 2) are non-dimensional known functions, 
which defined later. 

We will utilize the subsequent dimensionless variables. 

(𝑟∗, 𝑢𝑟
∗) = ℓ(𝑟, 𝑢𝑟)  , (𝑡∗, 𝜏𝑞

∗) = ℓ𝑣 (𝑡, 𝜏𝑞), 𝜃∗ = 𝛼𝑡𝜃, 𝜎𝑖𝑗
∗ =

𝜎𝑖𝑗

𝜇
   (23) 

where ℓ =
𝜌𝑐𝐸𝑣

𝑘
, and  𝑣 = √(2𝜇 + 𝜆)/𝜌 , is the speed of 

propagation of isothermal elastic waves. 

By using the non-dimensional variables mentioned before, the 
governing equations (16)-(20) may be expressed without the 
asterisks for the intent of simplicity. 

𝑒̈(𝑟, 𝑡) = 𝒢̂𝛼(∇2𝑒 − ∇2𝜃),  (24) 

𝑢̈𝑟 = 𝒢̂𝛼 (
𝜕𝑒

𝜕𝑟
−

𝜕𝜃

𝜕𝑟
),  (25) 

∇2𝜃 = (
𝜕

𝜕𝑡
+ 𝜏𝑞

 𝜕2

𝜕𝑡2
) (𝜃 + 𝜀 𝒢̂𝛼(𝑒)).  (26) 

𝜎𝑟𝑟 = 𝒢̂𝛼 (2
∂𝑢𝑟

∂𝑟
+ (𝜉2 − 2)𝑒 − 𝜉2𝜃)  (27) 

𝜎𝜑𝜑 = 𝒢̂𝛼 (
2𝑢𝑟

𝑟
+ (𝜉2 − 2)𝑒 − 𝜉2𝜃)  (28) 

𝜎𝑧𝑧 = 𝒢̂𝛼((𝜉2 − 2)𝑒 − 𝜉2𝜃)  (29) 

where 𝜀 =
𝛼𝑡

2(2𝜇+3𝜆)2𝜗0

𝜌𝑐𝐸
  , 𝜉2 =

2𝜇+𝜆

𝜇
, the operator 𝒢̂𝛼(∙) is 

defined for any function ℎ(𝑟, 𝑡) of class Η1(𝑎0, 𝑎1), 𝑎0 < 𝑎1 as 

follows: 

𝒢̂𝛼(ℎ(𝑟, 𝑡)) = 𝜏𝛼 ∫ 𝐸𝛼 (−
𝛼

1 − 𝛼
(𝑡 − 𝜐)𝛼)

∂ℎ(𝑟, 𝜐)

∂𝜐
𝑑𝜐.

𝑡

0

 

4. Solution in the transform domain 

We shall now define the Laplace transform (denoted by a bar) 

with respect to a function ℎ(𝑟, 𝑡) by the relation [56] 

ℒ{ℎ(𝑟, 𝑡); 𝑡} = ∫ ℎ(𝑟, 𝑡)𝑒−𝑠𝑡∞

0
𝑑𝑡 = ℎ̅(𝑟, 𝑠),  (30) 

where ℎ(𝑟, 𝑡) is continuous function on time, 𝑠 is the Laplace 

parameter. 

Applying the Laplace transform to both sides of equations (24)-
(29), and using the homogenous initial conditions, we arrive at: 

(∇2 −
𝑠2

𝜛
) 𝑒̅ − ∇2𝜃̅ = 0,  (31) 

𝑠2

𝜛
𝑢̅𝑟 =

𝜕𝑒̅

𝜕𝑟
−

𝜕𝜃̅

𝜕𝑟
,  (32) 

(∇2 − (𝑠 + 𝜏𝑞
 𝑠2)) 𝜃̅ − 𝜀𝜛(𝑠 + 𝜏𝑞

 𝑠2)𝑒̅ = 0,  (33) 

𝜎𝑟𝑟 = 𝜛 (2
∂𝑢𝑟

∂𝑟
+ (𝜉2 − 2)𝑒̅ − 𝜉2𝜃̅),  (34) 

𝜎𝜑𝜑 = 𝜛 (
2𝑢̅𝑟

𝑟
+ (𝜉2 − 2)𝑒̅ − 𝜉2𝜃̅),  (35) 

𝜎𝑧𝑧 = 𝜛 ((𝜉2 − 2)𝑒̅ − 𝜉2𝜃̅),  (36) 

where ℒ{𝒢̂𝛼(ℎ(𝑟, 𝜈))} = 𝜛ℎ̅(𝑟, 𝑠), and 𝜛 =
𝑠𝛼

𝑠𝛼+(
𝛼

1−𝛼
)
 

The transformed non dimensional boundary conditions (21) and 
(22) become 

𝜃̅(𝑎, 𝑠) = 𝑓1̅(𝑠), 𝜃̅(𝑏, 𝑠) = 𝑓2̅(𝑠),                                        (37) 

𝜎𝑟𝑟 (𝑎, 𝑠) = 𝜎𝑟𝑟(𝑏, 𝑠) = 0,                                                    (39) 

Eliminating 𝜃̅ between equations (31) and (33), we obtain 

(∇4 − ∇2 (
𝑠2

𝜛
+ (𝑠 + 𝜏𝑞

 𝑠2)(1 + 𝜀𝜛)) +
𝑠3

𝜛
(1 + 𝜏𝑞

 𝑠)) 𝑒̅(𝑟, 𝑠)  = 0    (39) 

The above equation can be factorized as 

∏ (∇2 − 𝑘𝑖
2)2

𝑖=1 𝑒̅(𝑟, 𝑠)  = 0                                                  (40) 

where 𝑘𝑖
2, 𝑖 = 1, 2 are the roots with positive real parts of the 

characteristic equation 

𝑘4 − 𝑘2 (
𝑠2

𝜛
+ (𝑠 + 𝜏𝑞

 𝑠2)(1 + 𝜀𝜛)) +
𝑠3

𝜛
(1 + 𝜏𝑞

 𝑠) = 0.       (41) 

Hence, the solutions of equation (42) is given by 

𝑒(𝑟, 𝑠) = ∑ 𝑘𝑖
2(𝐴𝑖𝐼0(𝑘𝑖𝑟) + 𝐵𝑖𝐾0(𝑘𝑖𝑟))2

𝑖=1 ,                         (42) 

where 𝐴𝑖 , 𝐵𝑖 , (𝑖 = 1, 2) are parameters depending on 𝑠. 𝐼𝑛(𝑟) 

and 𝐾𝑛(𝑟) are the modified Bessel functions of the first and 

second kinds of order 𝑛, respectively. 

Similarly, eliminating 𝑒̅(𝑟, 𝑠) , between equations (31) and (33), 

we obtain 
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(∇4 − ∇2 (
𝑠2

𝜛
+ (𝑠 + 𝜏𝑞

 𝑠2)(1 + 𝜀𝜛)) +
𝑠3

𝜛
(1 + 𝜏𝑞

 𝑠)) 𝜃̅(𝑟, 𝑠)  = 0  (45) 

For (𝑎 ≤ 𝑟 ≤ 𝑏), the solution of equation (45) is  

𝜃̅(𝑟, 𝑠) = ∑ (𝑘𝑖
2 −

𝑠2

𝜛
) (𝐴𝑖

′𝐼0(𝑘𝑖 𝑟) + 𝐵𝑖
′𝐾0(𝑘𝑖𝑟)),2

𝑖=1   (46) 

where 𝐴𝑖𝑛
′ , 𝐵𝑖𝑛

′ , 𝑖 = 1, 2 are parameters depending on 𝑠. 

Substituting from equations (44) and (46) into the equation (31), 
we obtain 

𝐴𝑖
′(𝑠) = 𝐴𝑖(𝑠), 𝐵𝑖

′(𝑠) = 𝐵𝑖(𝑠), ∀ 𝑖 = 1,2.                  

Substituting into equation (46), we get 

𝜃̅(𝑟, 𝑠) = ∑ (𝑘𝑖
2 −

𝑠2

𝜛
) (𝐴𝑖

 𝐼0(𝑘𝑖𝑟) + 𝐵𝑖
 𝐾0(𝑘𝑖𝑟)),2

𝑖=1   (47) 

By applying the Laplace transform to equation (14), and using 
Eq. (44), we obtain 

∂(𝑟𝑢𝑟)

∂ 𝑟
= 𝑟 ∑ 𝑘𝑖

2(𝐴𝑖𝐼0(𝑘𝑖𝑟) + 𝐵𝑖𝐾0(𝑘𝑖𝑟))2
𝑖=1 .        (48) 

integrating both sides of Eq.   (48) with respect to 𝑟, and using 

the given relation of the modified Bessel functions of the first 
kind [23,24] 

∫ 𝑟𝐼0(𝑟)𝑑𝑟 = 𝑟𝐼1(𝑟), and ∫ 𝑟𝐾0(𝑟)𝑑𝑟 = −𝑟𝐾1(𝑟). 

Hence, the bounded solution 𝑢̅𝑟 for 𝑎 ≤  𝑟 ≤  𝑏, is given by  

𝑢𝑟(𝑟, 𝑠) = ∑ 𝑘𝑖
 (𝐴𝑖𝐼1(𝑘𝑖𝑟) − 𝐵𝑖𝐾1(𝑘𝑖𝑟))2

𝑖=1 ,    (47) 

 Substituting from equation (44), (47), and   (47) into equations 
(34) and (35), we obtain the stress components, such that 

𝜎𝑟𝑟(𝑟, 𝑠) =
𝜛

𝑟
∑ (𝐴𝑖[ζ2𝑟𝐼0(𝑘𝑖𝑟) − 2𝑘𝑖

 𝐼1(𝑘𝑖𝑟)] +𝑛
𝑖=1

𝐵𝑖[ζ2𝑟𝐾0(𝑘𝑖𝑟) + 2𝑘𝑖
 𝐾1(𝑘𝑖𝑟)]),  

  (48) 

𝜎𝜑𝜑(𝑟, 𝑠) =
1

𝑟
∑ (𝐴𝑖𝑛[(ζ2 − 2𝑘𝑖

2)𝑟𝐼0(𝑘𝑖𝑟) +𝑛
𝑖=1

2𝑘𝑖
 𝐼1(𝑘𝑖𝑟)] + 𝐵𝑖𝑛[(ζ2 − 2𝑘𝑖

2)𝑟𝐾0(𝑘𝑖𝑟) + 2𝑘𝑖
 𝐾1(𝑘𝑖𝑟)])  

  (49) 

where 𝜁2 =
𝜉2𝑠2

𝜛
. 

5. Application  

Without loss of generality, the boundary thermal load 𝑓1(𝑡) =
 𝑓2(𝑡) =  𝑓(𝑡) as a time dependence thermal shock, we obtain 

𝑓(𝑡) = 𝐻(𝑡).                                                                          (50) (49) 

where 𝐻(𝑡) is the Heaviside unit step function. Taking the 
Laplace transform of the previous equation, we obtain 

𝑓(̅𝑠) =
1

𝑠
.                                                                                (51) (50) 

Equations (38), (40), (47),   (48), and (50) immediately give the 
system of four linear equations in the unknown parameters 
𝐴𝑖(𝑠), 𝑎𝑛𝑑𝐵𝑖(𝑠), 𝑖 = 1, 2. 

∑ (𝑘𝑖
2 −

𝑠2

𝜛
) (𝐴𝑖

 𝐼0(𝑘𝑖𝑎) + 𝐵𝑖
 𝐾0(𝑘𝑖𝑎)) =

1

𝑠
,2

𝑖=1       

∑ (𝑘𝑖
2 −

𝑠2

𝜛
) (𝐴𝑖

 𝐼0(𝑘𝑖𝑏) + 𝐵𝑖
 𝐾0(𝑘𝑖𝑏)) =

1

𝑠
,2

𝑖=1   

∑ (𝐴𝑖[ζ2𝑎𝐼0(𝑘𝑖𝑎) − 2𝑘𝑖
 𝐼1(𝑘𝑖𝑎)] + 𝐵𝑖[ζ2𝑎𝐾0(𝑘𝑖𝑟) + 2𝑘𝑖

 𝐾1(𝑘𝑖𝑎)])𝑛
𝑖=1 = 0,  

∑ (𝐴𝑖[ζ2𝑏𝐼0(𝑘𝑖𝑏) − 2𝑘𝑖
 𝐼1(𝑘𝑖𝑏)] + 𝐵𝑖[ζ2𝑏𝐾0(𝑘𝑖𝑟) + 2𝑘𝑖

 𝐾1(𝑘𝑖𝑏)])𝑛
𝑖=1 = 0.  

6. Numerical Results 

In order to invert the Laplace transform in the above equations 
(47)-  (49), we adopt a numerical inversion method based on a 

Fourier series expansion [51]. The numerical inversion method 
used to find the solution in the physical domain are listed in    

[57-59]. The numerical code has been prepared using Fortran 
programming language. The accuracy maintained was six digits 

for the numerical program, and the numerical results are 
illustrated graphically using MATLAB's robust graphical 

features. Numerical experiments were conducted at three instant 

values of time (small value of time, namely 𝑡 =  0.1, 0.14 and 

large value of time, namely 𝑡 =  0.5) at different value of 𝛼 ∈
(0,1).  

The fractional order parameter 𝛼 expresses memory or 

relaxation in thermoviscoelastic materials. This parameter 
affects the material's response to mechanical and thermal 

changes; a lower value of 𝛼 means that the material keeps a 

considerable degree of memory from its prior states. The 

material then shows very relaxed behavior and reacts slowly to 

thermomechanical changes. Conversely, when 𝛼 → 1, the 
material exhibits more normal viscoelastic behavior and has less 

memory retention. Here, the material depends less on its 
deformation history and reacts to thermomechanical changes as 
quickly as an exponential function. 

Let us now determine the inverse transforms for the case of 

small values of time 𝑡 → 0. By the initial value theorem of the 

Laplace transforms [60, 61], this corresponds to large values of 

𝑠. Taking 𝑥 = 𝑠−1, (𝑥 is small) and expanding the roots 𝑘1
2 and 

𝑘2
2 of the characteristic equation (43) into Maclaurin's series, we 

obtain 

𝑘𝑖
2 = 𝑠2(𝑏𝑖0 + 𝑂(𝑥𝛼)), (𝑖 = 1,2).                                            (52) 

where 𝑏𝑖0 =
1

2
((𝜏0 + 𝜏−𝛼 + 𝜀𝜏0𝜏𝛼) +

(−1)𝑖+1√𝜀𝜏0
2𝜏𝛼(𝜀𝜏𝛼 + 2) + 𝜏0(2𝜀 + 𝜏0) − 2𝜏0𝜏−𝛼 + 𝜏−2𝛼),   (𝑖 = 1,2). 

Taking square roots of equation (51) and expanding again, we get 

𝑘𝑖
 = 𝑠 (√𝑏𝑖0 + 𝑂(𝑥𝛼)) ,

1

√𝑘𝑖
 =

1

√𝑠
(𝑏𝑖0

−1/4
+ 𝑂(𝑥𝛼))  (𝑖 = 1,2).      (53) 

Hence, 

(𝑘𝑖
2 −

𝑠2

𝜛
) = 𝑠2((𝑏𝑖0

 − 𝜏𝛼) + 𝑂(𝑥𝛼)), 𝑖 = 1,2.                          (54) 

Since 𝑘𝑖 = 𝑂(𝑠), 𝑖 = 1,2 and 𝑘𝑖 is large. Thus, the modified 

Bessel functions of the first and second kinds have asymptotic 

expansions when the argument 𝑘𝑖𝑟 is large [62]. 

𝐼0(𝑘𝑖𝑟) ≅
𝑒𝑘𝑖𝑟

√2𝜋𝑘𝑖𝑟
 , 𝐾0(𝑘𝑖𝑟) ≅ √

𝜋

2𝑘𝑖𝑟
𝑒−𝑘𝑖𝑟 ,  𝑖 = 1,2 ,  𝑟 > 0         (55) 

By solving the linear system to determine 𝐴𝑖 , 𝐵𝑖 , 𝑖 = 1,2, using 

the relations (54) and expanding into Maclaurin's series with the 
help of the MATLAB symbolic toolbox, we obtain  

𝐴𝑖
 = (−1)𝑖 𝑒−𝑏√𝑏𝑖0𝑠

√𝑠5
(

√𝑏𝑖0
4

𝑏20−𝑏10
√2𝜋𝑏 + 𝑂(𝑥𝛼)) , 𝐵𝑖 =

(−1)𝑖 𝑒(2𝑎−𝑏)√𝑏𝑖0𝑠

√𝑠5
(

√𝑏𝑖0
4

𝑏10−𝑏20
√

2𝑏

𝜋
+ 𝑂(𝑥𝛼)) , (𝑖 = 1,2).        (56) 

Substituting from (52), (53) and (54) into (47), we obtain  

𝜃̅(𝑟, 𝑠) =
1

𝑠
√

𝑏

𝑟
∑ (−1)𝑖 (

(𝑏𝑖0
 −𝜏𝛼)

𝑏20−𝑏10
+2

𝑖=1

𝑂(𝑥𝛼)) (𝑒𝑠[(𝑟−𝑏)√𝑏𝑖0+𝑂(𝑥𝛼)] + 𝑒𝑠[(−𝑟+2𝑎−𝑏)√𝑏𝑖0++𝑂(𝑥𝛼)]) .  

(55) 

Now, we will use the Boley theorem [61, 63, 64], which is 
highly valuable for determining the wave front location and 

speeds of thermal and mechanical waves in Laplace transform 

expressions. This theorem is particularly beneficial when these 
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expressions involve exponential functions in their simplest 

form, up to order 𝑂(𝑥𝛼).  

The temperature distribution exhibits two interrelated waves. In 

Equation (55), the four exponential functions correspond to two 
distinct types of waves that originate from the outer and inner 

boundary surfaces, specifically mechanical and thermal waves. 
Thus, the terms corresponding to the first and third terms 

represent mechanical waves, whereas the terms corresponding 
to the second and fourth terms indicate thermal waves. These 

waves are travelling from the outer and inner boundary surfaces 
of the cylinder cavity with finite wave speeds equal to            

(
1

√𝑏𝑖0
, 𝑖 = 1,2 ). Additionally, the velocities of wave propagation 

for both mechanical and thermal waves depend explicitly on the 

three material parameters (𝜀, 𝜏0
 , 𝜏 ), which remain constant for 

the same material, and a new fractional parameter 𝛼. For any 

fixed value of fractional parameter 𝛼, the temperature 

distribution has a finite discontinuity across mechanical and 
thermal waves at the four wave fronts, as follows: 

𝑟𝑖|𝑓𝑜𝑟 waves originating at outer surface = 𝑏 −
𝑡

√𝑏𝑖0

, 𝑖 = 1,2, 

𝑟𝑖|𝑓𝑜𝑟 waves originating at inner surface = 𝑏 − 2𝑎 +
𝑡

√𝑏𝑖0

, 𝑖 = 1,2. 

Furthermore, the radial stress component exhibits the same 

features as the temperature distribution mentioned before. 
Nevertheless, the distribution of radial displacement remains 

continuous at these places, but its first derivatives exhibit 
discontinuous behavior with a finite jump. The numerical 

calculation of all physical quantities and non-dimensional 
speeds for the mechanical and thermal wave in poly-methyl-

methacrylate (PMMA) were computed based on the provided 
material constants in (Table 1). 

The impact of the fractional parameter α on the speed of the 
mechanical and thermal waves can be observed in  

Table 2. An important observation is that as the fractional order 

parameter α increases, the speed of both thermal and mechanical 

waves decreases. The wave speeds at α =  0 are identical to 

those reported in Ref. [67, 68] for thermoelasticity with a single 
relaxation time. 

(Figure 1) depicts the variation of dimensionless temperature 

𝜃(𝑟, 𝑡) against the radial direction with varying values of 𝛼. It is 

seen that for any given value of 𝛼, the temperature distribution 

has a maximum value at the boundaries. This observation is 

consistent with the specified thermal boundary condition, which 
subjects the outside and inner boundary surfaces of the cylinder 

cavity to a thermal shock. Within the medium, the temperature 

gradually decays radially. For small values of time (e.g., 𝑡 =
0.1), the sharp temperature decreases to zero because of the 

impact on the thermal wave front. For a longer duration of time 

(e.g., 𝑡 =  0.14), the two thermal waves from both surfaces of 

cylinder cavity converge to 𝑟 = 2.0, as this time is sufficient for 

both outer and inner thermal waves to reach to this location. 

When we increase the time (t = 0.5, for instance), we observe 
that the two thermal waves transferred from both boundary 

surfaces merge and blend with each other, leading to an overall 
increase in the temperature of the cylinder cavity. This behavior 

corresponds to the fact that the wave travels at a finite speed. 

Our calculations, with an accuracy of 10−6, indicate that the 

temperature profile distribution values are almost identical for 

various values of 𝛼. The model is not limited by the fact that the 

parameter 𝛼 has no direct impact on temperature. Temperature 

is the measurement used to quantify the amount of thermal 

energy present in a system. The parameter 𝛼 governs the 

response of a material to changes in temperature and affects its 
stress and strain characteristics.  

 

 

 

 

 

 

 

 

 

 

 
 

(Figure 2) shows the variation of the radial displacement, 

𝑢𝑟(𝑟, 𝑡), against the radial direction for various values of 𝛼. It is 

observed that, for a given value of 𝛼, the absolute value of the 

displacement component 𝑢𝑟 records a maximum value at the 

boundaries of the cylinder cavity and decreases gradually with 

propagation inside the medium to attain minimum values. 
Furthermore, the amplitude of the radial displacement 

diminishes uniformly across the entire domain as the value of 𝛼 

increases and approaches zero at a faster rate (i.e., for larger 

values of 𝛼, the rate of decay accelerates). Investigating the 

impact of the fractional parameter 𝛼 on the displacement in 

thermoviscoelastic materials represented by the Mittag-Leffler 

function, small values of 𝛼 allow the system to keep more 

memory. Accordingly, the system is still influenced by the 
earlier thermomechanical effects for a considerable amount of 

time. We can see the system as a long-term accumulation of 
little effects. The long-term memory consequences cause 

displacement to increase gradually. The displacement is little at 
first and keeps growing steadily. Thus, the system needs longer 

time to reach a substantial displacement. Displacement increases 
gradually initially but then keeps rising. With time, this ongoing 

buildup causes a considerable displacement. The material 
deforms gradually and more because of the continuing 

consequences of previous occurrences. A larger 𝛼 means that 

the system keeps a smaller memory. Because past effects of 

stress and strain fade more quickly, the system reacts to current 
variations in stress and strain more swiftly. The displacement 

begins to increase more rapidly due to the system's shorter 
memory. Displacement becomes a steady state more quickly, 

even though it grows rapidly at first. Thermomechanical effects 
fade fast, and displacement stabilizes at a specific point very 

quickly. The system does not hold memory for extraordinarily 
long; as a result, the final displacement is less than in systems 

with a smaller 𝛼. 
 

 

Figure 1. Dimensionless temperature vs. distance at 

different values of 𝛼. 
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Table 1. Mechanical and thermal properties of PMMA at reference temperature 𝜗0 = 2930𝐾 [65, 66]. 

Property 𝝀 𝝁 𝒌 𝒄𝑬 𝝆 𝜶𝑻 

Value 4.0 × 109 1.9 × 109 190 1470 1160 6.3 × 10−5 

Unit 𝑘𝑔 𝑚 𝑠𝑒𝑐2⁄  𝑘𝑔 𝑚 𝑠𝑒𝑐2⁄  𝑊/(𝑚𝐾) 𝐽/(𝑘𝑔𝐾) 𝑘𝑔 𝑚3⁄  𝐾−1 
 

Table 2 Effect of fractional parameter 𝛼 on waves speed [69]. 

𝜶  Speed for Mechanical wave Speed for thermal wave 

𝟎. 𝟗 0.1258925395 7.071067811 

𝟎. 𝟕 0.1995262147 7.071068395 

𝟎. 𝟓 0.3162275981 7.071071567 

𝟎. 𝟑 0.5011855488 7.071091583 

𝟎. 𝟏 0.7943112567 7.071218954 

𝟎. 𝟎 0.9999459087 7.071450317 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 3) illustrates the variation of the radial stress 

component 𝜎𝑟𝑟(𝑟, 𝑡) against the radial direction at different 

values of 𝛼. For a given 𝛼 value, the dimensionless radial stress 

component 𝜎𝑟𝑟  records zero at the boundaries of the cylinder 

cavity, which agrees with the prescribed mechanical boundary 

condition that the outer and inner surfaces of the cylinder cavity 
are traction-free. (Figure 3a) depicts the radial stress 

component 𝜎𝑟𝑟 , which begins at 0 and gradually rises to its 

maximum positive value until reaching the mechanical wave 

front. Subsequently, it descends to a negative value and 
continues to rise (although remaining negative) until it reaches 

the thermal wave front, at which point it abruptly transitions to 

zero. This behavior is replicated in (Figure 3b), at 𝑡 = 0.14 as 

the two transferred thermal waves merge, as observed in 

(Figure 1b). In (Figure 3c) at 𝑡 = 0.5, the gap in the middle is 

filled with waves originating from the outside and inner surfaces 
of the cylinder cavity, for more details, see Video S1. Video S1 

displayed the variation in nondimensional temperature, radial 
displacement, and radial stress component against the radial 

direction. Examining the impact of the fractional parameter on 
the radial stress component reveals significant behavioral 

changes in the material. The system's long-term memory 
characteristics are shown for small values of α. Accordingly, 

because of the long-lasting impact of earlier thermomechanical 
effects, stress is increasing gradually and persisting over time. 

Slowly but surely, stress grows. When α is close to one, 

however, the system exhibits minimal memory properties, 
indicating that present or recent strain is the main factor 

affecting stress. Early thermomechanical accumulation results in 
reduced long-term stress, which stabilizes quickly. A thorough 

knowledge of material dynamics is essential to managing stress 
in many thermomechanical problems. 

In all these figures, the decrease of 𝛼 results an increase in the 

magnitude of the radial stress component. It is important to note 
that a change in the fractional parameter significantly impacts 

mechanical functions such as displacement and stress, while 
having a negligible effect on temperature, as illustrated in 

(Figure 4). The effect is significant in terms of the location of 

the front and the speed of the thermal wave. At small values of 
time, all the curves exhibit the second sound effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is observed from (Figure 4) that, for any fixed values of the 

fractional parameter, the profiles of temperature, radial stress 
component, and radial displacement exhibit asymmetry around 

𝑟 = 2. This asymmetry arises due to the variation in 

temperature distribution between the inner surface of the 

cylindrical cavity at 𝑟 = 1 and the outer surface at 𝑟 = 3. The 

inner surface has a smaller area compared to the outer surface, 

resulting in a different temperature profile, and consequently 
affecting the amplitude of all physical quantity profiles. 

Nonetheless, the positions of the thermal and mechanical waves 

Figure 2. Dimensionless radial displacement vs. distance at 

different values of 𝛼. Figure 3. Dimensionless radial stress component vs. 

distance at different values of 𝛼. 

Figure 4. Effect of fractional parameter 𝛼 on some 
physical variables. 
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remain well-defined and confined within the medium. 

The physics of the problem allows us to identify the 
deformation arising solely from radial displacement. Therefore, 

we can select any cross section of the cylinder cavity and 
analyze its deformation by calculating the changes in area at 

various instantaneous times. We numerically compute the 
surface area of a deformed grid using the provided MATLAB 

toolbox. This approach builds a mesh grid using given radial 

(1 ≤ 𝑟 ≤ 3) and angular (0 ≤ 𝜑 ≤ 2𝜋) coordinates, then 

converts them to Cartesian coordinates. Using the results of the 
radial displacement, we next modify the Cartesian coordinates 

to represent the deformation. We determine the surface area by 
triangulating [70] and adding up the areas of each triangle 
formed by nearby grid points, as illustrated in (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

To validate this approach, we used finer grids to calculate the 

area of the first known shape of the cross section of the cylinder 

cavity. This yielded a value of 𝐴0 = 25.132, which coincides 

with the exact values up to three digits. In (Figures 6-7), we 
demonstrate the significant impact of the fractional order 

parameter on the deformation cross section at two specific 

moments in time, 𝑡 =  0.07 and 𝑡 =  0.1. We also calculate the 

area change, 𝛿𝐴, which is equal to 𝐴(𝑟, 𝛼, 𝑡) − 𝐴0. At any fixed 

instant value of time, the decreasing value of the fractional order 

parameter leads to an increase in the cross-section area of the 
cylinder cavity. Specifically, the small values of the fractional 

order parameter cause more deformation in the cylinder cavity, 
indicating a longer memory time. We conducted a 

comprehensive analysis spanning the entire duration. Video S2 
shows the deformation in the cylinder cavity's cross-section. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

The main goal of our paper is to solve one dimensional 

thermoviscoelastic problem of cylinder cavity under a new 
fractional mathematical model of generalized 

thermoviscoelasticity associated with non-singular fractional 
relaxation function. Unlike the other previous models in where 

the fractional parameter 𝛼 appears only in the equation of heat 

conduction. The solution of the governing equations of this 

model behaves in an equivalent manner to the solution of 
generalized thermoviscoelasticity model though with some 

different values. We suggest classifying the different material 

according to the value of the new fractional parameter 𝛼. A very 

important difference is that the presented model predicts finite 
speeds of propagation for thermal and mechanical waves while 

the speed of thermal wave in all previous fractional models in 
both fields of thermoelasticity and thermoviscoelasticity [36, 71, 

72] is infinite contrary to physical observations. Our study's 
primary limitation is its limited scope of experimental 

validation. While our study demonstrates strong numerical 
validation, it is essential to conduct appropriate real-world 

experimental validation for the suggested models. Also, 

accurate determination of 𝛼 is essential for diverse materials and 

physical problems since even minor variations in this value can 
cause significant changes in the thermomechanical responses. 

Nowadays, the knowledge (Generalized thermoviscoelasticity 

theory Associated with non-singular fractional Relaxation 

function) can be utilized by engineers, more particularly by 
mechanical and structural engineers for designing machine 

elements like synthesize metal. 

Supplementary materials  

Video S1: The variation in nondimensional temperature, radial 

displacement, and radial stress component against 𝑟 

at different values of 𝛼 through the time interval. 

Video S2:  Deformed cross-section with reduced mesh density 

at different values of 𝛼 through the time interval. 
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Figure 5. Deformed cross-section with finer mesh density. 

. 

Figure 6. Effect of fractional parameter 𝛼 on the deformation of 
cross-section and its area with reduced mesh density at 𝑡 = 0.07. 

Figure 7. . Effect of fractional parameter 𝛼 on the 
deformation of cross-section and its area with reduced mesh 

density at 𝑡 = 0.10. 
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