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ABSTRACT: This paper investigates the stability characteristics of the logistic differential 

equation with distributed delay, exploring its dynamics in both discrete and continuous time 

frameworks. By examining the influence of varying system parameters, particularly the delay 

kernel, the study provides a comprehensive understanding of how these factors shape system 

stability. The analysis employs numerical simulations to delineate stability regions, focusing on 

the interplay between parameter variations and dynamic behavior. Key findings highlight the 

critical role of the delay kernel in determining the transition between stable and unstable states. 

Numerical results are presented through visual tools such as phase portraits and plots of the 

maximal Lyapunov exponent, which capture the progression from stable equilibrium to oscillatory 

or chaotic dynamics. These illustrations offer valuable insights into the mechanisms underlying 

stability loss and the onset of complex behaviors. The study emphasizes the sensitivity of the 

logistic model to distributed delay variations, showcasing the intricate dependency of system 

behavior on the kernel's properties. This sensitivity is pivotal in understanding the dynamics of 

real-world systems modeled by logistic equations with delay. Moreover, the results have broad 

implications for applications where distributed delay plays a significant role, such as population 

dynamics, biological systems, and control theory. By elucidating the relationship between delay 

kernels, parameter changes, and system stability, this work contributes to a deeper understanding 

of delayed dynamical systems and their practical applications. The findings underscore the 

importance of delay structure in predicting and controlling system behavior.  
 

 

 

1. INTRODCTION 

 

Logistic differential equations have long been recognized as a 
cornerstone in mathematical modeling, particularly in the 

study of population dynamics. The classical logistic model, 
introduced by Verhulst in the 19th century, captures the 

essence of growth processes constrained by limited resources. 
This model assumes that the rate of population growth is 

proportional to both the current population size and  
the remaining capacity of the environment. The Logistic 

equation [1] is given by: 

 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝜌 𝑥(𝑡) (1 −

𝑥(𝑡)

𝑘
).  (1.1) 

where 𝑥(𝑡) represents the population size at time 𝑡, 𝜌 is the 

intrinsic growth rate, and 𝑘 is the carrying capacity of the 
environment.
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While this model effectively describes simple population 
dynamics, real- world systems often exhibit complexities that 
necessitate extensions to the classical formulation. 

One such extension involves incorporating time delays, 
resulting in delay differential equations (DDEs). Time delays 

arise naturally in many bio- logical, ecological, and physical 
systems due to factors such as gestation periods, maturation 

times, and delayed environmental feedback. These delays 
significantly influence system behavior, introducing 

phenomena such as oscillations, bifurcations, and chaotic 

dynamics.  Among these, the delay logistic equation stands 
out as a fundamental tool for capturing population growth 

processes where current growth rates depend on past states 
[2]. 

The delay logistic equation with a fixed delay 𝜏 is given 
by: 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝜌 𝑥(𝑡) (1 −

𝑥(𝑡−𝜏)

𝑘
).  (1.2) 

where τ is specific lags in reproduction or resource utilization. 
While this model enhances realism, it is often limited in 

capturing the broader influence of historical population states 
over a continuous time range [3]. 

The multiple delays model accounts for various delays, 

denoted as 𝜏𝑖 , each associated with a specific coefficient 𝛼𝑖, 

reflecting distinct lagging processes. This approach is 

particularly effective in representing ecosystems influenced 
by multiple factors, where each factor has its own delay 

attributes. Examples include climatic variations, resource 
availability, and human interventions, all of which can 
concurrently impact population dynamics [4]. 

 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝜌 𝑥(𝑡) (1 −

1

𝑘
 ∑ 𝛼𝑖𝑥(𝑡 − 𝑡𝑖)

𝑛
𝑖=1 ).  (1.3) 

On the other hand, the distributed delay framework offers a 
more versatile approach for modeling systems where feedback 

processes are gradual rather than instantaneous. For instance, 
in ecosystems, factors such as resource regeneration, 

competition, and environmental changes often exert their 
influence over an extended period. By incorporating 

distributed delays, these models provide deeper insights into 
the stability and dynamic behavior of complex systems. 

 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝜌 𝑥(𝑡) (1 −

1

𝑘
 ∫ 𝐺(𝑡 − 𝑠)

𝑡

0
𝑥(𝑠)𝑑𝑠).       (1.4) 

The concept of distributed delays in DDEs extends the idea of 
a discrete delay by considering a delay that is spread over a 

range of times rather than occurring at a single fixed 
point. This approach is especially useful in modeling 

systems where the influence of past states is distributed over 
a continuum of past times [5, 6, 7, 8]. 

The equation can be rewritten by assuming k = 1 as 
follows: 

 
𝑑𝑥(𝑡)

𝑑𝑡
= (𝜌 𝑥(𝑡) − 𝜌 𝑥(𝑡) ∫ 𝐺(𝑡 − 𝑠)

𝑡

0
𝑥(𝑠)𝑑𝑠).  (1.5) 

 

Recent studies have highlighted the importance of distributed 
delay models in diverse applications, ranging from ecological 

systems to epidemiology and economic modeling. For 
example, Zhang et al. explored the impact of distributed 

delays on predator-prey systems, revealing how such delays 
can stabilize or destabilize population dynamics [9]. 

Similarly, distributed delays have been employed in epidemic 
models to account for delayed immune responses, improving 
the predictive accuracy of disease spread [10]. 

This paper aims to investigate the dynamic properties of 

logistic differential equations with distributed delays. 
Specifically, we analyze the stability, bifurcation, and chaotic 

dynamics of models incorporating α-distributed delays. By 
employing the linear chain trick, we convert these models 

into systems of ordinary differential equations, facilitating 
both theoretical and numerical analyses. 

The paper is structured as follows: we discussed the model of 

Logistic equation with distributed delay in Section (2). 
Section (3) presents a stability analysis of continuous-time 

distributed delay models. In Section (4), we discretize the 
system and examine its stability properties. Section (5) 

provides numerical simulations to validate the theoretical 
findings. Finally, Section (6) concludes with a summary and 
discussion of future research directions. 

2. Model Description 

The distributed delay logistic differential equation is given by 
(1.5) is studied in [11, 12, 13, 14]. In this paper, rather than 

focusing on the discrete delay in equation (1.2), we examine 
the Logistic equation with and α distributed delay in the form 
as 

 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝜌 𝑥(𝑡) − 𝜌  (∫ 𝐺(𝑡 − 𝑠)

𝑡

0

𝑥(𝑠)𝑑𝑠)

2

. (2.1) 

This type of logistic model involves differential equations 

with distributed delays but differs significantly in how the 
delayed terms are represented. In equation (2.1), the delay 

term incorporates the square of the integral of past states 

𝑥(𝑡), weighted by a kernel function 𝐺(𝑡). This structure 

suggests that the influence of past states accumulates over 
time and is subsequently squared, which can result in a 

nonlinear amplification of historical effects on the current 
state. 

We take the kernel function as the weak kernel [15, 16], The 

exponential kernel models a fading memory effect, where 
past states influence the present state with a gradually 

decreasing weight. This is biologically and physically 
realistic in many applications, such as population dynamics 
and neural networks. 

The exponential kernel allows the linear chain trick (or 
reduction method) to transform a delay differential equation 

(DDE) into a system of ordinary differential equations 

(ODEs). This transformation simplifies numerical simulations 
and theoretical analysis. 

 

𝐺(𝑡) = 𝑒−𝛼𝑡 , 𝛼 > 0, 
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then, (1.6) can be written as: 
 

 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝜌 𝑥(𝑡) − 𝜌  (∫ 𝑒−𝛼(𝑡−𝑠)𝑥(𝑠)𝑑𝑠

𝑡

0

)

2

, 

  𝑥(0) = 𝑥0. 

(2.2) 

 

By applying the linear chain trick [7, 11], these types of 

Logistic with dis- tributed delay are converted into systems of 
ordinary differential equations, making them more 
straightforward to analyze and solve. 

we assume that  

 

𝑦(𝑡) = ∫ 𝑒−𝛼(𝑡−𝑠)𝑥(𝑠)𝑑𝑠
𝑡

0

, 

 

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑥 − 𝛼𝑦. 

 

then we obtain feedback control of the 𝛼 − distributed delay 

Logistic differential equations corresponding to problem (2.2) 
as the following system: 

3. The Continuous Tme Model of (2.3) 

3.1. The fixed points and Stability analysis of model (2.3) 

Stability analysis aims to determine under what conditions 
the solutions of the Logistic equation converge or diverge. 

Stability criteria involve examining the eigenvalues of the 

associated characteristic equation, which is derived from 
linearizing the system around its equilibrium points. 

Here, we study the local stability of (2.3). First, we solve the 
following equations to find the equilibrium points 

𝜌(𝑥 − 𝑦2) = 0, 

     𝑥 − 𝛼𝑦 = 0. 

we get the equilibrium points (0, 0) and (𝛼2, 𝛼). Now, we 

linearize (2.3) at the equilibrium point and the Jacobian 
matrix of the system is given by 

𝐽 = [
𝜌 −2𝜌𝑦∗

1 −𝛼
]    (3.1) 

The corresponding characteristic polynomial has trace 

𝑇 =  𝜌 −  𝛼 and a determinant 𝐷 = −𝛼𝜌 +  2𝜌𝑦∗. The 

eigenvalues of the Jacobian matrix are 

𝜆1,2 =
1

2
(𝑇 ± √Δ),  

where   Δ = 𝑇2 − 4𝐷, 𝑇 =  𝑡𝑟𝑎𝑐𝑒(𝐽)  

and 𝐷 =  𝑑𝑒𝑡(𝐽). 

The trace-determined method [17, 18] offers a simple yet 
powerful tool for analyzing the stability of continuous time 
system using the lemma (3.1). 

The trace-determined method [17, 18] offers a simple yet 
powerful tool for analyzing the stability of continuous time 
system using the lemma (3.1). 

 

Lemma 3.1. The fixed points (𝑥∗, 𝑦∗) 

(1) If ∆ >  0, 𝐷 >  0 and 𝜏 <  0 the fixed point is 

stable node. 

(2) If ∆ >  0, 𝐷 >  0 and 𝜏 >  0 the fixed point is 
unstable node. 

(3) If ∆ <  0, 𝐷 >  0 and 𝜏 <  0 the fixed point is stable 
spiral. 

(4) If ∆ <  0, 𝐷 >  0 and 𝜏 >  0 the fixed point is 
unstable spiral. 

Proposition 3.2. Stability of the system (2.3) 

(1) If 𝜌 <  𝛼 and 𝜌2  +  𝛼2  <  6𝜌𝛼 the eigenvalues for 

the first equilibrium point are complex conjugates 
with negative real parts, indicating it is a stable 
spiral (stable focus). 

(2) If 𝜌 >  𝛼 and 𝜌2 + 𝛼2  <  6𝜌𝛼 the eigenvalues for 

the first equilibrium point are negative real 
indicating, it is an unstable spiral. 

(3) If 𝜌 <  𝛼 and 𝜌2  +  𝛼2  >  6𝜌𝛼 the eigenvalues for 

the first equilibrium point are negative real 
indicating, it is a stable node. 

(4) If 𝜌 >  𝛼 and 𝜌2  +  𝛼2  >  6𝜌𝛼, then it is a unstable 

node. 

(5) If 𝜌 =  𝛼 and 𝜌2  +  𝛼2  <  6𝜌𝛼, then it is a center 
node. 

(6) The fixed point (0, 0) is an unstable saddle node. 
 

In Figure 1 shows that the stability region typically shows 

the behavior of a dynamical system near equilibrium points. 
In this graph, the stability region is represented by the area 

where trajectories of the system converge towards an 
equilibrium point, often indicating a stable node in green or a 

stable spiral in blue color. Outside this stability region, the 
system behaves differently, possibly moving away from 
equilibrium, indicating instability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝜌(𝑥(𝑡) − 𝑦2(𝑡)),                  𝑥(0) = 𝑥0, 

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑥 − 𝛼𝑦(𝑡),                              𝑦(0) = 0. 

(2.3) 

Figure 1. Stability regions for System (2.3). 

. 
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4. Discrete-time version of (2.3) 

4.1. Stability of discretized system  

Now, we use piecewise constant arguments method [11, 19, 
20] to discretize the system (2.3) as follows: 

𝑥𝑛+1  =  𝑥𝑛  +  𝑟𝜌(𝑥𝑛  −  𝑦𝑛), 𝑥(0) = 𝑥0,  

𝑦𝑛+1  =  𝑦𝑛  +  𝑟(𝑥𝑛  −  𝛼𝑦𝑛),        𝑦(0) =  0.          
(4.1) 

Now, we study the local stability of the fixed points of 
discretized system (4.1). The Jacobian matrix of the 
system (4.1) is given by

  

 𝐽(𝑥∗, 𝑦∗) = [
1 + 𝑟𝜌 −2 𝑟𝜌 𝑦∗

𝑟 1 − 𝛼𝑟
]. (4.2) 

The characteristic equation of the Jacobian matrix at the 
positive fixed point can be written as 

𝐹 (𝜆)  =  |𝐽 −  𝜆𝐼|  =  𝜆2 +  𝑃𝜆 +  𝑄 =  0,   (4.3) 

where  
𝑃 =  (𝛼 −  𝜌)𝑟 –  2, 

and                                   

𝑄 =  1 −  𝑟(𝛼 −  𝜌) + 𝑟2𝜌𝛼. 

In order to study the modulus of eigenvalues of the 
characteristic equation (local stability),   

We first know the following lemma (4.1), which is the 

relations between roots and coefficients of the quadratic 
equation. 

Lemma 4.1. [21, 22] let 𝐹 (𝜆)  = 𝜆2  +  𝑃𝜆 +  𝑄 =
 0. Suppose that 𝐹 (1) > 0, 𝜆1,2 are two roots 

of 𝐹 (𝜆)  =  0, then 

• |𝜆1|  <  1 and |𝜆2|  <  1 if and only if 𝐹 (−1) >  0 

and 𝑄 <  1. 

• |𝜆1|  >  1 and |𝜆2|  <  1 or (|𝜆1|  <  1 and |𝜆2|  >  1) 

if and only if 𝐹 (−1)  <  0. 

• |𝜆1|  >  1 and |𝜆2| > 1 if and only if 𝐹 (−1)  >  0 

and 𝑄 >  1. 

• 𝜆1  =  −1 and 𝜆2 ≠   1 if and only if 𝐹 (−1)  =  0 

and 𝑃 ≠  0, 2. 

• 𝜆1  and 𝜆2 are complex and |𝜆1| = |𝜆2| = 1 if and 

only if and 𝑃2 − 4𝑄 <  0 and  𝑄 =  1. 

Proposition 4.2. The local stability of the fixed point 

(𝛼2, 𝛼) of the system (4.1) 

(1) It is called sink (asymptotically stable) if 

  
2𝛼 𝑟−4

𝑟(𝛼𝑟+2)
< 𝜌 <

𝛼

𝛼𝑟+1
. 

(2) It is called source if  𝜌 > 𝑚𝑎𝑥 {
𝛼

𝛼𝑟+1
,

2𝛼 𝑟−4

𝑟(𝛼𝑟+2)
}. 

(3) It is called saddle if  𝜌 <
2𝛼 𝑟−4

𝑟(𝛼𝑟+2)
. 

(4) It is called a nonhyperbolic of the one of the 
conditions holds: 

• 𝛼 > 4𝜌 and 𝑟 =
𝛼±√𝛼2−4𝛼𝜌

𝛼𝜌
  where, 𝑟 ≠

2

𝛼
,

4

𝛼
.  

• 
𝛼2+𝜌2

𝛼𝜌
< 6 and 𝑟 =

1

𝜌
−

1

𝛼
. 

 

 

4.2. Chaos control  

In this section we discuss the chaos control method  
[23, 24] for the feedback control (4.1), to stabilize chaotic of 

an unstable fixed point of the system. Consider the following 
controlled form of system (4.1):  

where, 𝑢𝑛  = −𝑘1(𝑥𝑛 − 𝑥∗) − 𝑘2(𝑦𝑛 − 𝑦∗) which is the 

control force, the Jacobian matrix of the new feedback 
control (4.4) is 

 𝐽(𝑥∗, 𝑦∗) = [
𝑎11 − 𝑘1 𝑎12 − 𝑘2

𝑎21 𝑎22
],  (4.5) 

where 

𝑎11  =  1 +  𝑟𝜌, 

𝑎12  = −2𝑟𝜌𝑦, 

𝑎21  =  𝑟, 

𝑎22  =  1 − 𝛼𝑟. 

              The characteristic equation of the Jacobian is given 
by 

𝜆2  −  (𝑎11  + 𝑎22  −  𝑘1) 𝜆 + 𝑎22(𝑎11  − 𝑘1)  
− 𝑎21(𝑎12  − 𝑘2)  =  0. 

(4.6) 

we assume that 

 𝜆1 + 𝜆2 =  𝑎11 + 𝑎22 − 𝑘1, (4.7) 

and 

𝜆1 𝜆2   =  𝑎22(𝑎11 − 𝑘1)   − 𝑎21(𝑎12 − 𝑘2).  (4.8) 

The equations 𝜆1 = ±1  and  𝜆1𝜆2   =  1 must be solved 

to get the lines of marginal stability. These requirements 

ensure that the modulus of the eigenvalues 𝜆1  and 𝜆2 is 
smaller than 1.  

The three equations as follows: let 𝜆1𝜆2  =  1 

𝑙1 ∶  𝑎22𝑘1  − 𝑎21𝑘2  = 𝑎11𝑎22  − 𝑎12𝑎21  −  1.  (4.9) 

let 𝜆1  =  1 in (4.1) and (4.8) 

𝑙2 ∶  (1 − 𝑎22)𝑘1  − 𝑎21𝑘2  =  𝑎11  +  𝑎22  −
 1 − 𝑎11𝑎22  +  𝑎12𝑎21.  

(4.10) 

let 𝜆1  =  −1 in (4.1) and (4.8) 

𝑙3 ∶  (1 + 𝑎22)𝑘1  − 𝑎21𝑘2  =  𝑎11  +  𝑎22  +
 1 + 𝑎11𝑎22  −  𝑎12𝑎21.  

(4.11) 

The stable eigenvalues lie in the triangular region bounded 
by l1, l2 and l3 as in numerical simulation. 

5. Numerical results 

This study investigates the dynamical behavior of (4.1), 

focusing on its bifurcation diagrams, maximal Lyapunov 
exponents, and phase portraits. Through numerical 

simulations, we explore the transitions between stability and 
chaos, the sensitivity of the system to initial conditions, and 

the nature of its equilibrium states. We analyze the 
bifurcation structure and chaotic behavior by varying the 

bifurcation parameter 𝑟 and 𝛼, while keeping other 

𝑥𝑛+1 = 𝑥𝑛 + 𝑟 𝜌(𝑥 − 𝑦𝑛
2) + 𝑢𝑛 , 

𝑦𝑛+1 = 𝑦𝑛 + 𝑟(𝑥𝑛 − 𝛼𝑦𝑛).           
    (4.4) 
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parameters fixed. Additionally, the role of the damping 

parameter 𝛼 in enhancing stability is examined. We use 

the initial condition (𝑥0, 𝑦0)  =  (0.1, 0.1) and vary the 

parameter 𝑟 and 𝛼 to study the system’s behavior. 

The bifurcation diagram of system (4.1), as illustrated in 

(Figures 2a and 2c), highlights crucial changes in the 

system’s dynamics as the bifurcation parameter 𝑟 varies. 

As 𝑟 increases, the system initially exhibits stable 

behavior but undergoes Neimark-Sacker bifurcations at 

𝑟 =  0.158 and 𝑟 =  0.3 for parameters 𝜌 =  2 and 

𝛼 =  3, 𝛼 =  5. Neimark-Sacker bifurcations, occurring 

in discrete-time dynamical systems, mark a shift from 

stable fixed points or periodic orbits to more intricate and 
complex dynamics. 

In terms of Lyapunov exponents, these bifurcations 

correspond to changes in the stability of orbits. At the onset 
of chaos, the maximum Lyapunov exponent becomes 

positive, indicating sensitive dependence on initial 
conditions, which is characteristic of chaotic dynamics. In 

Figure 2b, the first signs of chaos appear at 𝑟 =  0.165, 
where the bifurcation diagram begins to display aperiodic, 

dense points instead of discrete or periodic structures, 
confirming the presence of chaotic behavior. Similarly, in 

(Figure 2d), chaos emerges at 𝑟 =  0.3. 
 

 

 

 

 

 

 

 
                      

(a)                                                (b) 

 

 

 

 

 

 

 

 
 

 

(c)                                               (d) 

 

 

 

 
 

 

The bifurcation diagrams for System (4.1) with a fixed 

bifurcation parameter 𝑟 =  0.1 and varying values of 𝛼 

reveals notable dynamical transitions. Figures 3a and 3c 

display these bifurcation diagrams for two distinct values 

of 𝜌. In Figure 3a, where 𝜌 =  2, the system undergoes a 

Neimark- Sacker bifurcation at 𝛼 =  2.6. Similarly, in 

(Figure 3c), with 𝜌 =  5, the bifurcation diagram shows 

that a Neimark-Sacker bifurcation occurs at a higher value 

of 𝛼 =  10.2. 

In our numerical simulations, an interesting observation 

emerges as the parameter 𝛼 increases beyond certain 

thresholds, the bifurcation phenomena begin to diminish, 

leading to a stabilization of the system’s dynamics. 
Specifically, in both (Figures 3a and 3c), when α is 

increased significantly above the Neimark-Sacker 

bifurcation points at 𝛼 =  2.6 for 𝜌 =  2 and 𝛼 =
 10.2 for 𝜌 =  5, the bifurcation behavior is no longer 

observed. This stabilization suggests that larger values of 𝛼 

suppress the system’s tendency towards complex or chaotic 
dynamics, promoting stability. 

This phenomenon indicates that higher 𝛼 values may 

strengthen the system’s resistance to oscillatory or quasi-

periodic behavior that typically arises from bifurcations. 

Consequently, for sufficiently large 𝛼 , the system settles into 

stable fixed points or regular orbits, bypassing chaotic 
regimes entirely. 

To examine the effects of varying 𝑟 and 𝛼 on the system’s 

behavior, we present detailed phase portraits and time series 
for both parameters. 

When 𝑟 varies and 𝜌 =  2, 𝛼 =  3 are fixed, the 

system’s stability significantly changes. When 𝑟 is increased 

beyond 0.16, the system becomes more unstable, as shown in 

the phase portraits and the time series clearly shows the onset 
of oscillations in the (Figure 4). 
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(c)                                               (d) 

 

 

 

 

Figure 2. The bifurcation diagrams and maximal 

Lyapunov exponents with varying 𝑟 at fixed 𝛼 =  3, 5 and 

𝜌 =  2. 

. 

Figure 3. The bifurcation diagrams and maximal 

Lyapunov exponents with varying 𝛼 at fixed 𝑟 =  0.1 and 

𝜌 =  2, 5. 
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On the other hand, the effect of varies 𝛼 and 𝜌 =
 5, 𝑟 =  0.1 are fixed, the system exhibits periodic but 

unstable behavior, where the trajectories form closed loops in 
the phase portrait, but the system does not settle to a stable 

fixed point as in (Figures 5a and 5b). The system exhibits 
periodic oscillations, clearly visible in the time series plot. 

These oscillations persist as the system approaches stability, 

but as 𝛼 is increased, the system reaches a stable state more 

quickly. This is evident in (Figures 5c, 5d and 5e) where 

higher values of 𝛼 lead to faster stabilization, reducing the 

time required for the system to converge to its equilibrium 
point. 
 

 

 

 

 

 

 

 

 

 

 

 (a) r = 0.16                               (b) r = 0.35 
 

 

 

 

 

 

 

 

 

(c) r = 0.39                              (d) r = 0.41 
 

 

 

 

 

 

 

 

 
(e) r = 0.42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) α = 8                             (b) α = 9 
 

 

 

 

 

 

 

 

 

 

          (c) α = 10                                     (d) α = 11 

 

 

 

 

 

 
 

(e) a = 12 

 
 

 
To explore how state feedback controls the unstable fixed 

point in a chaotic system, we performed numerical 

simulations with the following fixed parameter values: 𝛼 =
 8, 𝑟 =  0.1, and 𝜌 =  5. The feedback gains were set to 

𝑘1   =  3 and 𝑘2  =  2, with the initial conditions starting at 

(0.1, 0.1). This setup was chosen to stabilize the system 

within a bounded triangular region, leading  

to a more stable dynamics despite the inherent chaotic 
behavior of the system as in ( Figure 6). The feedback 

control parameters 𝑘1   =  3 and 𝑘2  =  2 within this 
triangular region effectively mitigate the system’s sensitivity 

to initial conditions and promote stability by modifying  
the response of the system near the fixed point.  

Chaos control in this context is evident through  
the application of the feedback mechanism, which  

 

Figure 4. The phase diagrams of the system with varying r 

and fixed ρ =  2 and α =  3. 

 

Figure 5. The phase diagrams of the system with varying α 

and fixed ρ =  5 and r =  0.1. 
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stabilizes the system by steering the trajectory towards the 
fixed point and preventing the system from exhibiting 

chaotic oscillations. Figure 7 shows the time series before 
and after the chaos control (from iterations 200 to 400) 

vividly illustrate this transition, where chaotic fluctuations 
gradually dampen, and the system converges to a stable fixed 
point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) The time series for x before chaos control 
 

 

 

 
 

Furthermore, the phase portraits before and after the chaos 
control (shown in two separate figures) reinforce the 

effectiveness of the feedback control. Before applying the 
control, the phase portraits display a periodic behavior as in 

(Figure 8a). After applying the control, the trajectories in the 

phase portraits stabilize, indicating the successful suppression 
of chaotic dynamics and the convergence to a stable 
equilibrium point as in (Figure 8b). 

 

 

 

 

 

 

 

 

 

 

 

a) The phase portrait before control    b) The phase portrait after control 

 

 

 

 

6. Conclusion 

In summary, this research investigates the dynamic behavior 

of the logistic differential equation with distributed delays in 
both continuous and discrete time settings. The findings 

demonstrate that the delay parameter α plays a pivotal role in 
regulating system stability, with variations in its value driving 

transitions between stable, periodic, and chaotic behaviors. 
By employing bifurcation analysis and simulations of 

maximum Lyapunov exponents, critical shifts in system 
dynamics are identified, including the emergence of chaos. 

Furthermore, the study highlights that implementing suitable 
chaos control strategies can effectively mitigate chaotic 
behavior, resulting in more predictable and stable outcomes. 

The analysis underscores the system’s sensitivity to key 
parameter changes, emphasizing the necessity of precise 

tuning for practical applications. The bifurcation diagrams 
and Lyapunov exponent analysis provide valuable insights 

into stability, enhancing the understanding of how delays 
and parameter adjustments influence the overall dynamics. 

These findings hold significant relevance for areas such as 
biology, population dynamics, and control theory, offering 

important guidance for designing and managing systems 
affected by distributed delays in both continuous and 
discrete-time domains. 

In future work, we plan to explore extensions related to our 

study, including nonlinear and time-dependent delays, the 
impact of singular perturbations, and the development of 

advanced chaos control strategies. Additionally, we will discuss 
potential applications in biological systems. 
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